Skip to main content
Log in

Empty Singularities in Higher-Dimensional Gravity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the exact solution of Einstein’s field equations consisting of a (n+2)-dimensional static and hyperplane symmetric thick slice of matter, with constant and positive energy density ρ and thickness d, surrounded by two different vacua. We explicitly write down the pressure and the external gravitational fields in terms of ρ and d, the pressure is positive and bounded, presenting a maximum at an asymmetrical position. And if \(\sqrt{\rho} d\) is small enough, the dominant energy condition is satisfied all over the spacetime. We find that this solution presents many interesting features. In particular, it has an empty singular boundary in one of the vacua.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We have set the normalization constant such that, in the Newtonian limit, they lead to \(\nabla^{2} \varPhi=-\frac{1}{2} \nabla^{2}(1+g_{tt})= 4 \pi G \rho\).

References

  1. Gamboa Saraví, R.E.: Int. J. Mod. Phys. A 23, 1995 (2008)

    Article  ADS  MATH  Google Scholar 

  2. Gamboa Saraví, R.E.: Class. Quantum Gravity 25, 045005 (2008)

    Article  ADS  Google Scholar 

  3. Gamboa Saraví, R.E.: Gen. Relativ. Gravit. 41, 1459 (2009)

    Article  ADS  MATH  Google Scholar 

  4. Gamboa Saraví, R.E.: Int. J. Mod. Phys. A 24, 5381 (2009)

    Article  ADS  MATH  Google Scholar 

  5. Taub, A.H.: Ann. Math. 53, 472 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Gamboa Saraví, R.E., Sanmartino, M., Tchamitchian, P.: Class. Quantum Gravity 27, 215016 (2010)

    Article  ADS  Google Scholar 

  7. Taub, A.H.: Phys. Rev. 103, 454 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Maldacena, J.M.: Adv. Theor. Math. Phys. 2, 231 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  9. Aharony, O., Gubser, S.S., Maldacena, J., Ooguri, H., Oz, Y.: Phys. Rep. 323, 183 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  10. Maartens, R., Koyama, K.: Living Rev. Relativ. 13, 5 (2010)

    ADS  Google Scholar 

  11. Carter, B.: Phys. Rev. Lett. 26, 331 (1971)

    Article  ADS  Google Scholar 

  12. Tangherlini, F.R.: Nuovo Cimento 27, 636 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ponce de Leon, J., Cruz, N.: Gen. Relativ. Gravit. 32, 1207 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Myers, R.C., Perry, M.J.: Ann. Phys. 172, 304 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Emparan, R., Reall, H.S.: Living Rev. Relativ. 11, 6 (2008)

    ADS  Google Scholar 

  16. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1963)

    Google Scholar 

  17. Novotný, J., Horský, J.: Czechoslov. J. Phys. B 24, 718 (1974)

    Article  ADS  Google Scholar 

  18. Liang, C.: J. Math. Phys. 31, 1464 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo E. Gamboa Saraví.

Appendix: Killing Vectors and Adapted Coordinates

Appendix: Killing Vectors and Adapted Coordinates

We want to find coordinates adapted to a hyperplane symmetric distribution of matter. That is, space-time must be invariant under n translations and under rotations in n(n−1)/2 hyperplanes.

More precisely, a n+2 dimensional space-time will be said to be n-dimensional Euclidean homogenous if it admits the r=n(n+1)/2 parameter group of isometries of the n-dimensional Euclidean space ISO(n).

Since the spacetime admits n mutually commuting independent motions, we can choose coordinates x i,z,t so that the corresponding Killing vectors are ξ (i)= i (i=1,…,n), and so

$$ \xi_{(i)}^k = \delta^k_i \quad \left ( \begin{array}{c} k=t,1,\ldots,n,z\\ i=1,\ldots,n \end{array} \right ) . $$
(33)

The equations of Killing,

$$ \xi^k {\partial_{k}}g_{ij}+ g_{kj} { \partial_{i}}\xi^k + g_{ik} { \partial_{j}} \xi^k= 0 , $$
(34)

corresponding to these vectors become

$$ {\partial_{k}} g_{ij}= 0 \quad \left ( \begin{array}{c} i,j=t,1,\ldots,n,z\\ k=1,\ldots,n \end{array} \right ) . $$
(35)

Hence all the components of the metric tensor depend only on the coordinates t and z and the metric is unaltered by the finite transformation

$$ x^i \rightarrow x^i + a^i \quad (\mathrm{for} \ i=1,\ldots,n) . $$
(36)

We can take for the remaining n(n−1)/2 motions, the generators ξ (ij)=x i j x j i (i<j and i,j=1,…,n), so

$$ {\partial_{l}} \xi_{(ij)}^k = \delta^i_l \delta^k_j- \delta^j_l \delta^k_i \quad \left ( \begin{array}{c} k,l=t,1,\ldots,n,z\\ i<j\ \mathrm{and}\ i,j=1,\ldots,n \end{array} \right ) . $$
(37)

Taking into account (35) and (37) from the equations of Killing (34), we get

$$ g_{jm} \delta^i_l -g_{im} \delta^j_l+g_{lj} \delta^i_m-g_{li} \delta^j_m= 0 \quad \left ( \begin{array}{c} m,l=t,1,\ldots,n,z\\ i<j\ \mathrm{and}\ i,j=1,\ldots,n \end{array} \right ) . $$
(38)

From the last equation we readily find

$$ g_{ii}=g_{jj} \quad\mathrm{and}\quad g_{ij}=g_{it}=g_{iz}=0 \quad (\ i\neq j\ \mathrm{and}\ i,j=1,\ldots,n) . $$
(39)

Furthermore, we can take the bidimensional metric of the V 2 spaces x i= constant (i=1,…,n) in the conformal flat form. Hence, the most general metric admitting this group of isometries may be written as

$$ ds^2= - e^{2 U(z, t)} \bigl(dt^2-dz^2 \bigr)+ e^{2V(z, t)} \bigl(\bigl(dx^{ 1}\bigr)^2+\cdots+ \bigl(dx^{ {n}}\bigr)^2 \bigr) . $$
(40)

If, in addition, we impose staticity, U and V must be time independent, and the change of variable ∫e U(z) dzz brings the line element to the form (1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamboa Saraví, R.E. Empty Singularities in Higher-Dimensional Gravity. Int J Theor Phys 51, 3062–3072 (2012). https://doi.org/10.1007/s10773-012-1189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1189-4

Keywords

Navigation