Skip to main content
Log in

Geometry of Quark and Strange Quark Matter in Higher Dimensional General Relativity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we study quark matter and strange quark matter in higher-dimensional spherical symmetric space-times. We analyze strange quark matter for the different equations of state and obtain the space-time geometry of quark and strange quark matter. We also discuss the features of the obtained solutions in the context of higher-dimensional general theory of relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sahdev, D.: Phys. Rev. D 30, 2495 (1984)

    Article  ADS  Google Scholar 

  2. Emelyanov, V.M., Nikitin, Y.P., Rozental, J.L., Berkov, A.V.: Phys. Rep. 143, 1 (1986)

    Article  ADS  Google Scholar 

  3. Chatterjee, S., Bhui, B.: Int. J. Theor. Phys. 32, 671 (1993)

    Article  MathSciNet  Google Scholar 

  4. Overduin, J.M., Wesson, P.S.: Phys. Rep. 283, 303 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  5. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370, 4690 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Shen, Y., Tan, Z.: Phys. Lett. A 142, 341 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  7. Paul, B.C.: Class. Quantum Gravity 18, 2311 (2001)

    Article  Google Scholar 

  8. Kaluza, T.: Sitz.ber. Preuss. Akad. Wiss. Berl. Philos.-Hist. Kl. F1, 966 (1921)

    Google Scholar 

  9. Klein, O.: Ann. Phys. 37, 895 (1926)

    Google Scholar 

  10. Gondek-Rosinska, D., Gourgoulhon, E., Haensel, P.: Astron. Astrophys. 412, 777 (2003)

    Article  ADS  Google Scholar 

  11. Kapusta, J.: Finite-Temperature Field Theory. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  12. Sotani, H., Kohri, K., Harada, T.: Phys. Rev. D 69, 084008 (2004)

    Article  ADS  Google Scholar 

  13. Xu, R.X.: Chin. J. Astron. Astrophys. 3, 33 (2003)

    Article  ADS  Google Scholar 

  14. Dey, M., Bombaci, I., Dey, J., Ray, S., Samanta, B.C.: Phys. Lett. B 438, 123 (1998)

    Article  ADS  Google Scholar 

  15. Gondek-Rosinska, D., Bulik, T., Zdunik, L., et al.: Astron. Astrophys. 363, 1005 (2000)

    ADS  Google Scholar 

  16. Sharma, R., Karmakar, S., Mukherjee, S.: Int. J. Mod. Phys. D 15, 405 (2006)

    Article  ADS  MATH  Google Scholar 

  17. Yilmaz, I.: Gen. Relativ. Gravit. 38, 1397 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Back, B.B., et al.: Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  19. Admas, J., et al.: Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  20. Adcox, K., et al.: Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  21. Cahill, M.E., McVittie, G.C.: J. Math. Phys. 11, 1382 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Khadekar.

Appendix

Appendix

For the line element (5) the non zero component of \(R_{jij}^{i}\) is

$$ R_{jij}^{i} = (1 + e^{-2\nu}\dot{R^{2}} - e^{-2\varphi}R'^{2}),$$
(42)

where i=3,4,5,…,n j=2,3,4,…,n−1 and i>j.

Examination of this expression reveals that if R=r our line element (5) reduces to

$$ ds^{2} = e^{-2\nu}dt^{2} - \frac{dr^{2}}{1 - R_{jij}^{i}}- r^{2}d\Omega^{2}.$$
(43)

If curvature coordinates used in empty region then spherically symmetric five dimensions (5D) Schwarzschild’s like metric is given by

$$ ds^{2} = \biggl(1 - \frac{A}{r^{2}}\biggr)dt^{2} - \frac{dr^{2}}{(1 -\frac{A}{r^{2}})} - r^{2}d\Omega^{2},$$
(44)

where A is a constant and from Newtonian approximation A=M. Comparison of (43) and (44) gives

$$ (R_{jij}^{i})_{b} = \frac{M}{r_{b}^{2}},$$
(45)

where the subscript b means evaluation at the boundary. We can, at this stage, follow the arguments of Cahill and McVittie [21] in defining intuitively a mass function in 5D as

$$ m(r,t) = R^{2}(1 + e^{-2\nu}\dot{R^{2}} - e^{-2\varphi}R'^{2}).$$
(46)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khadekar, G.S., Wanjari, R. Geometry of Quark and Strange Quark Matter in Higher Dimensional General Relativity. Int J Theor Phys 51, 1408–1415 (2012). https://doi.org/10.1007/s10773-011-1016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-1016-3

Keywords

Navigation