Skip to main content
Log in

Magnetized strange quark matter in the equivparticle model with both confinement and perturbative interactions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

We investigated the properties of strange quark matter in an external strong magnetic field with both confinement and leading-order perturbative interactions considered. It was found that the leading-order perturbative interaction can stiffen the equation of state of magnetized quark matter, while the magnetic field lowers the minimum energy per baryon. By solving the Tolman–Oppenheimer–Volkoff equations, we obtain the internal structure of strange stars. The maximum mass of strange stars can be as large as 2 times the solar mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.F. Xu, G.X. Peng, F. Liu, D.F. Hou, L.W. Chen, Strange matter and strange stars in a thermodynamically self-consistent perturbation model with running coupling and running strange quark mass. Phys. Rev. D 92, 025025 (2015). doi:10.1103/PhysRevD.92.025025

    Article  Google Scholar 

  2. N. Itoh, Hydrostatic equilibrium of hypothetical quark stars. Prog. Theor. Phys. 44, 291 (1970). doi:10.1143/PTP.44.291

    Article  Google Scholar 

  3. A.R. Bodmer, Collapsed nuclei. Phys. Rev. D 4, 1601 (1971). doi:10.1103/PhysRevD.4.1601

    Article  Google Scholar 

  4. H. Terazawa. INS-Report 336, University of Tokyo (1979)

  5. E. Witten, Cosmic separation of phases. Phys. Rev. D 30, 272 (1984). doi:10.1103/PhysRevD.30.272

    Article  Google Scholar 

  6. M. Angeles Perez-Garcia, J. Silk, J.R. Stone, Dark matter, neutron stars, and strange quark matter. Phys. Rev. Lett. 105, 141101 (2010). doi:10.1103/PhysRevLett.105.141101

    Article  Google Scholar 

  7. V. Dexheimer, J.R. Torres, D. Menezes, Stability windows for proto-quark stars. Eur. Phys. J. C 73, 2569 (2013). doi:10.1140/epjc/s10052-013-2569-5

    Article  Google Scholar 

  8. C.J. Xia, G.X. Peng, S.W. Chen, Z.Y. Lu, J.F. Xu, Thermodynamic consistency, quark mass scaling, and properties of strange matter. Phys. Rev. D 89, 105027 (2014). doi:10.1103/PhysRevD.89.105027

    Article  Google Scholar 

  9. S. Chakrabarty, Quark matter in a strong magnetic field. Phys. Rev. D 54, 1306 (1996). doi:10.1103/PhysRevD.54.1306

    Article  Google Scholar 

  10. K. Sato, H. Suzuki, Analysis of neutrino burst from the supernova 1987A in the large magellanic cloud. Phys. Rev. Lett. 58, 2722 (1987). doi:10.1103/PhysRevLett.58.2722

    Article  Google Scholar 

  11. L. Dong, S.L. Shapiro, Cold equation of state in a strong magnetic field—effects of inverse beta-decay. Astrophys. J. 383, 745 (1991). doi:10.1086/170831

    Article  Google Scholar 

  12. R. Duncan, C. Thompson, Formation of very strongly magnetized neutron stars-implications for gamma-ray bursts. Astron. J. 392, L9 (1992). doi:10.1086/186413

    Article  Google Scholar 

  13. C. Kouveliotou et al., An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806–20. Nature 393, 235 (1998). doi:10.1038/30410

    Article  Google Scholar 

  14. T. Tatsumi, T. Maruyama, E. Nakano, K. Nawa, Ferromagnetism in quark matter and origin of the magnetic field in compact stars. Nucl. Phys. A 774, 827 (2006). doi:10.1016/j.nuclphysa.2006.06.145

    Article  Google Scholar 

  15. B. Feng, R. Huang, Y. Jia, Gauge amplitude identities by on-shell recursion relation in S-matrix program. Phys. Lett. B 695, 350 (2011). doi:10.1016/j.physletb.2010.11.011

    Article  MathSciNet  Google Scholar 

  16. G.X. Peng, Thermodynamic correction to the strong interaction in the perturbative regime. Europhys. Lett. 72(1), 69 (2005). doi:10.1209/epl/i2005-10189-8

    Article  Google Scholar 

  17. E.S. Fraga, R.D. Pisarski, J. Schaffner-Bielich, Small, dense quark stars from perturbative QCD. Phys. Rev. D 63, 121702(R) (2001). doi:10.1103/PhysRevD.63.121702

    Article  Google Scholar 

  18. B.A. Freedman, L.M. McLerran, Fermions and Gauge vector mesons at finite temperature and density. 1. Formal techniques. Phys. Rev. D 16, 1130 (1977). doi:10.1103/PhysRevD.16.1130

    Article  Google Scholar 

  19. V. Baluni, Nonabelian Gauge theories of fermi systems: chromotheory of highly condensed matter. Phys. Rev. D 17, 2092 (1978). doi:10.1103/PhysRevD.17.2092

    Article  Google Scholar 

  20. M. Bagchi, S. Ray, M. Dey, J. Dey, Compact strange stars with a medium dependence in gluons at finite temperature. Astron. Astrophys. 450, 431 (2006). doi:10.1051/0004-6361:20053732

    Article  Google Scholar 

  21. M. Sinha, X.G. Huang, A. Sedrakian, Strange quark matter in strong magnetic fields within a confining model. Phys. Rev. D 88, 025008 (2013). doi:10.1103/PhysRevD.88.025008

    Article  Google Scholar 

  22. Y. Nambu, G. Jona-Lasino, Dynamical model of elementary particles based on an analogy with superconductivity. Phys. Rev. 122, 345 (1961). doi:10.1103/PhysRev.122.345

    Article  Google Scholar 

  23. S. Plumari, G.F. Bugio, V. Greco, Quark matter in neutron stars within the field correlator method. Phys. Rev. D 88, 083005 (2013). doi:10.1103/PhysRevD.88.083005

    Article  Google Scholar 

  24. R.X. Xu, Solid quark stars? Astrophys. J. 596, L59–L62 (2003). doi:10.1086/379209

    Article  Google Scholar 

  25. R.X. Xu, Can cold quark matter be solid? Int. J. Mod. Phys. D 19, 1437 (2003). doi:10.1142/S0218271810017767

    Article  Google Scholar 

  26. C.F. Li, L. Yang, X.J. Wen, G.X. Peng, Magnetized quark matter with a magnetic-field dependent coupling. Phys. Rev. D 93, 054005 (2016). doi:10.1103/PhysRevD.93.054005

    Article  Google Scholar 

  27. C.J. Xia, G.X. Peng, E.G. Zhao, S.G. Zhou. Phys. Rev. D 93, 085025 (2016). doi:10.1103/PhysRevD.93.085025

  28. C.J. Xia, G.X. Peng, E.G. Zhao, S.G. Zhou, From strangelets to strange stars: a unified description. Sci. Bull. 61(2), 172–177 (2016). doi:10.1007/s11434-015-0982-x

    Article  Google Scholar 

  29. G.S. Khadekar, R. Wanjari, Geometry of quark and strange quark matter in higher dimensional general relativity. Int. J. Theor. Phys. 51, 1408 (2012). doi:10.1007/s10773-011-1016-3

    Article  MATH  Google Scholar 

  30. P.K. Sahoo, B. Mishra, Axially symmetric space-time with strange quark matter attached to string cloud in bimetric theory. Int. J. Pure Appl. Math. 82, 87 (2013)

    MATH  Google Scholar 

  31. X.J. Wen, Color-flavor locked strange quark matter in a strong magnetic field. Phys. Rev. D 88, 034031 (2013). doi:10.1103/PhysRevD.88.034031

    Article  Google Scholar 

  32. A.A. Isayev, J. Yang, Anisotropic pressure in strange quark matter under the presence of a strong magnetic field. J. Phys. G 40, 035105 (2013). doi:10.1088/0954-3899/40/3/035105

    Article  Google Scholar 

  33. X.Y. Wang, I.A. Shovkovy, Bulk viscosity of spin-one color superconducting strange quark matter. Phys. Rev. D 82, 085007 (2010). doi:10.1103/PhysRevD.82.085007

    Article  Google Scholar 

  34. M. Huang, I.A. Shovkovy, Chromomagnetic instability in dense quark matter. Phys. Rev. D 70, 051501(R) (2004). doi:10.1103/PhysRevD.70.051501

    Article  Google Scholar 

  35. T. Bao, G.Z. Liu, E.G. Zhao, M.F. Zhu, Self-consistently thermodynamic treatment for strange quark matter in the effective mass bag model. Eur. Phys. J. A 38, 287 (2008). doi:10.1140/epja/i2008-10682-6

    Article  Google Scholar 

  36. G.X. Peng, H.C. Chiang, P.Z. Ning, B.S. Zhou, Charge and critical density of strange quark matter. Phys. Rev. C 59, 3452 (1999). doi:10.1103/PhysRevC.59.3452

    Article  Google Scholar 

  37. G.X. Peng, H.C. Chiang, J.J. Yang, L. Li, B. Liu, Mass formulas and thermodynamic treatment in the mass density dependent model of strange quark matter. Phys. Rev. C 61, 015201 (2000). doi:10.1103/PhysRevC.61.015201

    Article  Google Scholar 

  38. X.J. Wen, Z.H. Zhong, G.X. Peng, P.N. Shen, P.Z. Ning, Thermodynamics with density and temperature dependent particle masses and properties of bulk strange quark matter and strangelets. Phys. Rev. C 72, 015204 (2005). doi:10.1103/PhysRevC.72.015204

    Article  Google Scholar 

  39. J.X. Hou, G.X. Peng, C.J. Xia, J.F. Xu, Magnetized strange quark matter in a mass–density-dependent model. China Phys. C 39(1), 015101 (2015). doi:10.1088/1674-1137/39/1/015101

    Article  Google Scholar 

  40. S.S. Cui, G.X. Peng, Z.Y. Lu at el, Properties of color-flavor locked strange quark matter in an external strong magnetic field. Nucl. Sci. Tech. 26, 040503 (2015). doi:10.13538/j.1001-8042/nst.26.040503

    Google Scholar 

  41. A.A. Isayev, Stability of magnetized strange quark matter in the MIT bag model with a density dependent bag pressure. Phys. Rev. C 91, 015208 (2015). doi:10.1103/PhysRevC.91.015208

    Article  Google Scholar 

  42. V. Goloviznin, H. Satz, The refractive properties of the gluon plasma in SU(2) theory. Z. Phys. C 57, 671 (1993). doi:10.1007/BF01561487

    Article  Google Scholar 

  43. A. Peshier, B. Kämpfer, O.P. Pavlenko, G. Soff, An effective model of the quark-gluon plasma with thermal parton masses. Phys. Lett. B 337, 235 (1994). doi:10.1016/0370-2693(94)90969-5

    Article  Google Scholar 

  44. M.I. Gorenstein, S.N. Yang, Gluon plasma with a medium dependent dispersion relation. Phys. Rev. D 52, 5206 (1995). doi:10.1103/PhysRevD.52.5206

    Article  Google Scholar 

  45. M. Bluhm, B. Kämpfer, G. Soff, The QCD equation of state near T(c) within a quasi-particle model. Phys. Lett. B 620, 131 (2005). doi:10.1016/j.physletb.2005.05.083

    Article  Google Scholar 

  46. V.M. Bannur, Self-consistent quasiparticle model for quark-gluon plasma. Phys. Rev. C 75, 044905 (2007). doi:10.1103/PhysRevC.75.044905

    Article  Google Scholar 

  47. F.G. Gardim, F.M. Steffens, Thermodynamics of quasi-particles at finite chemical potential. Nucl. Phys. A 825, 222 (2009). doi:10.1016/j.nuclphysa.2009.05.001

    Article  Google Scholar 

  48. H. Li, X.L. Luo, H.S. Zong, Bag model and quark star. Phys. Rev. D 82, 065017 (2010). doi:10.1103/PhysRevD.82.065017

    Article  Google Scholar 

  49. L.J. Luo, J.C. Yan, W.M. Sun, H.S. Zong, A thermodynamically consistent quasi-particle model without density-dependent infinity of the vacuum zero point energy. Eur. Phys. J. C 73, 2626 (2013). doi:10.1140/epjc/s10052-013-2626-0

    Article  Google Scholar 

  50. M. Ruggieri, P. Alba, P. Castorina et al., Polyakov loop and gluon quasiparticles in Yang–Mills thermodynamics. Phys. Rev. D 86, 054007 (2012). doi:10.1103/PhysRevD.86.054007

    Article  Google Scholar 

  51. P. Alba, W. Alberico, M. Bluhm et al., Polyakov loop and gluon quasiparticles: a self-consistent approach to Yang–Mills thermodynamics. Nucl. Phys. A 934, 41 (2015). doi:10.1016/j.nuclphysa.2014.11.011

    Article  Google Scholar 

  52. C. Wu, R.L. Xu, Strange quark matter and strangelets in the improved quasiparticle model. Eur. Phys. J. A 51(10), 124 (2015). doi:10.1140/epja/i2015-15124-x

    Article  Google Scholar 

  53. Z.Y. Lu, G.X. Peng, J.F. Xu, S.P. Zhang, Properties of quark matter in a new quasiparticle model with QCD running coupling. Sci. China Phys. Mech. Astron. 59(6), 662001 (2016). doi:10.1007/s11433-015-0524-2

    Article  Google Scholar 

  54. G.N. Fowler, S. Raha, R.M. Weiner, Confinement and phase transitions. Z. Phys. C 9, 271 (1981). doi:10.1007/BF01410668

    Article  Google Scholar 

  55. S. Chakrabarty, S. Raha, B. Sinha, Strange quark matter and the mechanism of confinement. Phys. Lett. B 229, 112 (1989). doi:10.1016/0370-2693(89)90166-4

    Article  Google Scholar 

  56. O.G. Benvenuto, G. Lugones, Strange matter equation of state in the quark mass density dependent model. Phys. Rev. D 51, 1989 (1995). doi:10.1103/PhysRevD.51.1989

    Article  Google Scholar 

  57. G. Lugones, O.G. Benvenuto, Strange matter equation of state and the combustion of nuclear matter into strange matter in the quark mass density dependent model at \(T > 0\). Phys. Rev. D 52, 1276 (1995). doi:10.1103/PhysRevD.52.1276

    Article  Google Scholar 

  58. G.X. Peng, H.C. Chiang, B.S. Zhou, P.Z. Ning, S.J. Luo, Thermodynamics, strange quark matter, and strange stars. Phys. Rev. C 62, 025801 (2000). doi:10.1103/PhysRevC.62.025801

    Article  Google Scholar 

  59. G.X. Peng, A. Li, U. Lombardo, Deconfinement phase transition in hybrid neutron stars from the Brueckner theory with three-body forces and a quark model with chiral mass scaling. Phys. Rev. C 77, 065807 (2008). doi:10.1103/PhysRevC.77.065807

    Article  Google Scholar 

  60. G.X. Peng, X.J. Wen, Y.D. Chen, New solutions for the color-flavor locked strangelets. Phys. Lett. B 633, 314 (2006). doi:10.1016/j.physletb.2005.11.081

    Article  Google Scholar 

  61. G.X. Peng, X.J. Wen, Y.D. Chen, Charge, strangeness and radius of strangelets. J. Phys. G Nucl. Part Phys. 34, 1697 (2007). doi:10.1088/0954-3899/34/7/010

    Article  Google Scholar 

  62. X.P. Zheng, X.W. Liu, M. Kang, S.H. Yang, Bulk viscosity of strange quark matter in a density-dependent quark mass model and dissipation of the r mode in strange stars. Phys. Rev. C 70, 015803 (2004). doi:10.1103/PhysRevC.70.015803

    Article  Google Scholar 

  63. G. Lugones, J.E. Horvath, Quark–diquark equation of state and compact star structure. Int. J. Mod. Phys. D 12, 495 (2003). doi:10.1142/S0218271803002755

    Article  Google Scholar 

  64. R.D. Woods, D.S. Saxon, Diffuse surface optical model for nucleon-nuclei scattering. Phys. Rev. 95, 577 (2003). doi:10.1103/PhysRev.95.577

    Article  Google Scholar 

  65. P.C. Chu, L.W. Chen, X. Wang, Quark stars in strong magnetic fields. Phys. Rev. D 90, 063013 (2014). doi:10.1103/PhysRevD.90.063013

    Article  Google Scholar 

  66. G.X. Peng, H.Q. Chiang, B.S. Zou, P.Z. Ning, S.J. Luo, Thermodynamics, strange quark matter, and strange stars. Phys. Rev. C 62, 025801 (2000). doi:10.1103/PhysRevC.62.025801

    Article  Google Scholar 

  67. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Shapiro delay measurement of a two solar mass neutron star. Nature (London) 467, 1081 (2010). doi:10.1038/nature09466

    Article  Google Scholar 

  68. J. Antoniadis et al., A massive pulsar in a compact relativistic binary. Science 340, 1233232 (2013). doi:10.1126/science.1233232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Xiong Peng.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11135011, 11475110, and 11575190)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Peng, GX., Xia, CJ. et al. Magnetized strange quark matter in the equivparticle model with both confinement and perturbative interactions. NUCL SCI TECH 27, 98 (2016). https://doi.org/10.1007/s41365-016-0095-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0095-5

Keywords

Navigation