Skip to main content
Log in

Double-Slit Interference Pattern from Single-Slit Screen and Its Gravitational Analogues

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The double slit experiment (DSE) is known as an important cornerstone in the foundations of physical theories such as Quantum Mechanics and Special Relativity. A large number of different variants of it were designed and performed over the years. We perform and discuss here a new version with the somewhat unexpected results of obtaining interference pattern from single-slit screen. We show using either the Brill’s version of the canonical formulation of general relativity or the linearized version of it that one may find corresponding and analogous situations in the framework of general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shamos, M.: Great Experiments in Physics. Dover, New York (1987)

    Google Scholar 

  2. Young, T.: Experimental demonstrations of the general law of the interference of light. Philos. Trans. Roy. Soc. London 94, 1 (1804)

    Article  ADS  Google Scholar 

  3. Michelson, A.A., Morley, E.W.: Am. J. Sci. 134, 333 (1887)

    Google Scholar 

  4. Bergmann, P.G.: Introduction to the Theory of Relativity. Dover, New York (1976)

    Google Scholar 

  5. Merzbacher, E.: Quantum Mechanics, 2nd edn. Wiley, New York (1961)

    MATH  Google Scholar 

  6. Tannoudji, C.C., Diu, B., Laloe, F.: Quantum Mechanics. Wiley, New York (1977)

    Google Scholar 

  7. Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw–Hill, New York (1968)

    Google Scholar 

  8. Jenkins, F.A., White, H.E.: Fundamentals of Optics, 4rd edn. McGraw–Hill, New York (1976)

    Google Scholar 

  9. Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

  10. Zajonc, A.G.: Quantum eraser. Nature 353, 507 (1991)

    Article  ADS  Google Scholar 

  11. Kwiat, P.G., Steinberg, A.M., Chiao, R.Y.: Three proposed “quantum erasers”. Phys. Rev. A 49, 61 (1994)

    Article  ADS  Google Scholar 

  12. Herzog, T.J., Kwiat, P.G., Weinfurter, H., Zeilinger, A.: Complementarity and the quantum eraser. Phys. Rev. Lett. 75, 3034 (1995)

    Article  ADS  Google Scholar 

  13. Pittman, T.B., Strekalov, D.V., Migdall, A., Rubin, M.H., Sergienko, A.V., Shih, H.H.: Can two-photon interference be considered the interference of two photons? Phys. Rev. Lett. 77, 1917 (1996). Summary of the experiments described in these references is available at: http://www.bottomlayer.com/bottom/basic-delayed-choice.htm

    Article  ADS  Google Scholar 

  14. Finkelstein, D.: Action physics. Int. J. Theor. Phys. 38(1), 447 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kim, Y.-H., Yu, R., Kulik, S.P., Shih, Y.H., Scully, M.O.: A delayed choice quantum eraser. Phys. Rev. Lett. 84, 1–5 (2000). Commentary and summary of this experiment is available at: http://www.bottomlayer.com/bottom/kim-scully/kim-scully-web.htm

    Article  ADS  Google Scholar 

  16. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  17. Hartle, J.B.: Gravity: An Introduction to Einstein’s General Relativity. Addison–Wesley, San Francisco (2003)

    Google Scholar 

  18. Thorne, K.S.: Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  19. Thorne, K.S.: Gravitational wave research: Current status and future prospect. Rev. Mod. Phys. 52, 285 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  20. Brill, D.R.: On the positive definite mass of the Bondi–Weber–Wheeler time-symmetric gravitational waves. Ann. Phys 7, 466 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  21. Brill, D.R.: Suppl. Nuovo Cimento 2, 1–56 (1964)

    MathSciNet  Google Scholar 

  22. Brill, D.R., Hartle, J.B.: Method of the self-consistent field in general relativity and its application to the gravitational geon. Phys. Rev. B 135, 271 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  23. Murchadha, N.O.: Brill waves. gr-qc/9302023 (1993)

  24. Eppley, K.: Evolution of time-symmetric gravitational waves: Initial data and apparent horizons. Phys. Rev. D 16, 1609 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  25. Miyama, S.M.: Time evolution of pure gravitational wave. Prog. Theor. Phys. 65, 894 (1981)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Nakamura, T.: General solutions of the linearized Einstein equations and initial data for three dimensional evolution of pure gravitational waves. Prog. Theor. Phys. 72, 746 (1984)

    Article  MATH  ADS  Google Scholar 

  27. Gentle, A.P., Holz, D.E., Miller, W.A.: Apparent horizons in simplical Brill wave initial data. Class. Quantum Gravity 16, 1979–1985 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Gentle, A.P.: Simplical Brill wave initial data. Class. Quantum Gravity 16, 1987–2003 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Alcubierre, M., Allen, G., Brugmann, B., Lanfermann, G., Seidel, E., Suen, W.M., Tobias, M.: Gravitational collapse of gravitational waves in 3-D numerical relativity. Phys. Rev. D 61, 041501 (2000)

    Article  ADS  Google Scholar 

  30. Finkelstein, D., Rodriguez, E.: Relativity of topology and dynamics. Int. J. Theor. Phys. 23, 1065–1098 (1984)

    Article  MathSciNet  Google Scholar 

  31. Sorkin, R.D.: Topology change and monopole creation. Phys. Rev. D 33, 978 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  32. Brill, D., Lindquist, R.W.: Interaction energy in geometrodynamics. Phys. Rev. 131, 471–476 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Beig, R., Murchadha, N.O.: Trapped surfaces due to concentration of gravitational radiation. Phys. Rev. Lett. 66, 2421 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Abrahams, A.M., Evans, C.R.: Trapping a geon: black hole formation by an imploding gravitational wave. Phys. Rev. D 46, R4117 (1992)

    Article  ADS  Google Scholar 

  35. Tipler, F.J.: Singularities from colliding plane gravitational waves. Phys. Rev. D 22, 2929 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  36. Urtsever, U.: Singularities in the collisions of almost-plane gravitational waves. Phys. Rev. D 38, 1731 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. Urtsever, U.: Colliding almost-plane gravitational waves: colliding plane waves and general properties of almost-plane wave spacetimes. Phys. Rev. D 37, 2803 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  38. Arnowitt, R., Desser, S., Misner, C.W.: The dynamics of general relativity. In: Gravitation: An Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  39. Bar, D.: Gravitational holography and trapped surfaces. Int. J. Theor. Phys. 46, 664–687 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Bar, D.: Gravitational wave holography. Int. J. Theor. Phys. 46, 503–517 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580 (1928)

    Google Scholar 

  42. Bohr, N.: Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  MATH  ADS  Google Scholar 

  43. Bohr, N.: Atomic Theory and Description of Nature. Cambridge University Press, London (1934)

    MATH  Google Scholar 

  44. Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge University Press, London (1973)

    Google Scholar 

  45. Kuchar, K.: Canonical quantization of cylindrical gravitational waves. Phys. Rev. D 4, 955 (1971)

    Article  MATH  ADS  Google Scholar 

  46. Spiegel, M.R.: Fourier Analysis. Schaum’s Outline Series. McGraw–Hill, New York (1974)

    Google Scholar 

  47. Pipes, L.A.: Applied Mathematics for Engineers and Physicists, 2nd edn. McGraw–Hill, New York (1958)

    MATH  Google Scholar 

  48. Spiegel, M.R.: Vector Analysis. Schaum’s Outline Series. McGraw–Hill, New York (1959)

    Google Scholar 

  49. Synge, J.L., Schild, A.: Tensor Calculus. Dover, New York (1978)

    MATH  Google Scholar 

  50. Kuchar, K.: Ground state functional of the linearized gravitational field. J. Math. Phys. 11, 3322 (1970)

    Article  Google Scholar 

  51. Collier, R.J., Burckhardt, C.B., Lin, L.H.: Optical Holography. Academic, New York (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar, D. Double-Slit Interference Pattern from Single-Slit Screen and Its Gravitational Analogues. Int J Theor Phys 46, 2626–2657 (2007). https://doi.org/10.1007/s10773-007-9377-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-007-9377-3

Keywords

Navigation