Skip to main content
Log in

The Double-Slit Electron Diffraction Experiment with Aharonov-Bohm Phase Effect Revisited and the Divergence in its Asymptotic Form

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, we consider the experiment of diffraction and interference of electrons through a double slit added to the Aharonov-Bohm phase effect. We applied the asymptotic Fresnel functions to one term of the interference process obtaining an expression for the intensity with divergence for certain values of the flow parameter. This led us to an expression incapable of recovering the asymmetry effects of the diffraction pattern arising from the AB phase, as might be expected, since purely quantum effects cannot be classically reproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Ehrenberg, R. Siday, The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. London, Sect. B. 62, 8 (1949)

    ADS  MATH  Google Scholar 

  2. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Y. Aharonov, D. Bohm, Further considerations on electromagnetic potentials in the quantum theory. Phys. Rev. 123, 1511–1524 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  4. M. Bright, D. Singleton, Time-dependent non-Abelian Aharonov-Bohm effect. Phys. Rev. 91, 085010 (2015)

    MathSciNet  Google Scholar 

  5. T.T. Wu, C.N. Yang, Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D. 12, 3845–3857 (1975)

    ADS  MathSciNet  Google Scholar 

  6. S. Olariu, I.I. Popescu, The quantum effects of electromagnetic fluxes. Rev. Mod. Phys. 57, 339–436 (1985)

    ADS  Google Scholar 

  7. B.E. Allman, A. Cimmino, A.G. Klein, G.I. Opat, H. Kaiser, S.A. Werner, Scalar Aharonov-Bohm experiment with neutrons. Rev. Mod. Phys. 68, 2409–2412 (1992)

    Google Scholar 

  8. B.E. Allman, A. Cimmino, A.G. Klein, G.I. Opat, H. Kaiser, S.A. Werner, Erratum: scalar Aharonov-Bohm experiment with neutrons [Phys. Rev. Lett. 68, 2409 (1992)]. Phys. Rev. Lett. 70, 250–250 (1993)

  9. C. Gerry, V. Singh, Feynman path-integral approach to the Aharonov-Bohm effect. Phys. Rev. D. 20, 2550–2554 (1979)

    ADS  Google Scholar 

  10. M.V. Berry, Exact Aharonov-Bohm wavefunction obtained by applying Dirac’s magnetic phase factor. Eur. J. Phys. 1, 240 (1980)

    Google Scholar 

  11. X. Zhu, W.C. Henneberger, Some observations on the dynamics of the Aharonov-Bohm effect. J. Phys. A Math. Gen. 23, 3983 (1990)

    ADS  MathSciNet  Google Scholar 

  12. D. Shapiro, W.C. Henneberger, The Aharonov-Bohm effect in double- and single-slit diffraction. J. Phys. A Math. Gen. 22, 3605 (1989)

    ADS  Google Scholar 

  13. N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano, H. Yamada, Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor. Phys. Rev. A. 34, 815–822 (1986)

    ADS  Google Scholar 

  14. A. Tonomura, T. Matsuda, R. Suzuki, A. Fukuhara, N. Osakabe, H. Umezaki, J. Endo, K. Shinagawa, Y. Sugita, H. Fujiwara, Observation of Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443–1446 (1982)

    ADS  Google Scholar 

  15. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, H. Yamada, Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986)

    ADS  Google Scholar 

  16. M. Ballesteros, R. Weder, The Aharonov–Bohm effect and Tonomura others. experiments: rigorous results. J. Math. Phys. 50, 122108 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  17. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A: Mathematical, Physical and Engineering Sciences. 392, 45–57 (1984)

    MathSciNet  MATH  Google Scholar 

  18. Y. Aharonov, J. Anandan, Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)

    ADS  MathSciNet  Google Scholar 

  19. J. Samuel, R. Bhandari, General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339–2342 (1988)

    ADS  MathSciNet  Google Scholar 

  20. S. Pancharatnam, Generalized theory of interference, and its applications. Proc. Indiana Acad. Sci. Section A. 44, 247–262 (1956)

    MathSciNet  Google Scholar 

  21. J. Anandan, Non-adiabatic non-abelian geometric phase. Phys. Lett. A. 133, 171–175 (1988)

    ADS  MathSciNet  Google Scholar 

  22. M. Beau, Feynman path integral approach to electron diffraction for one and two slits: analytical results. Eur. J. Phys. 33, 1023 (2012)

    MATH  Google Scholar 

  23. D.H. Kobe, Aharonov-Bohm effect revisited. Ann. Phys. 123, 381–410 (1979)

    ADS  Google Scholar 

  24. P. Sancho, The two-particle two-slit experiment. Eur. Phys. J. D. 68, 34 (2014)

    ADS  Google Scholar 

  25. D.H. Kobe, V.C. Aguilera-Navarro, R.M. Ricotta, Asymmetry of the Aharonov-Bohm diffraction pattern and Ehrenfest’s theorem. Phys. Rev. A. 45, 6192–6197 (1992)

    ADS  Google Scholar 

  26. V.C. Aguilera-Navarro, R.M. Quick, Limiting analytic form for an Aharonov-Bohm diffraction pattern. Phys. Rev. A. 50, 2885–2892 (1994)

    ADS  Google Scholar 

  27. K. Bradonjić, J.D. Swain, Quantum measurement and the Aharonov–Bohm effect with superposed magnetic fluxes. Phys. Rev. A. 50, 2885–2892 (1994)

    MATH  Google Scholar 

  28. R.P. Feynman, A.R. Hibbs. Quantum Mechanics and Path Integrals: Emended Edition (Dover Publications, New York, 2012)

    MATH  Google Scholar 

  29. O.A. Barut, S. Basri, Path integrals and quantum interference. Am. J. Phys. 60, 896–899 (1992)

    ADS  Google Scholar 

  30. H. Yabuki, Feynman path integrals in the young double-slit experiment. Int. J. Theor. Phys. 25, 159–174 (1986)

    Google Scholar 

  31. R.D. Sorkin, Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A. 09, 3119–3127 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  32. U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs, Ruling out multi-order interference in quantum mechanics. Science. 329, 418–421 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  33. H. De Raedt, K. Michielsen, K. Hess, Analysis of multipath interference in three-slit experiments. Phys. Rev. A. 85, 012101 (2012)

    ADS  Google Scholar 

  34. R. Sawant, J. Samuel, A. Sinha, S. Sinha, U. Sinha, Nonclassical paths in quantum interference experiments. Phys. Rev. Lett. 113, 120406 (2014)

    ADS  Google Scholar 

  35. A. Sinha, A.H. Vijay, U. Sinha, On the superposition principle in interference experiments. Sci. Rep. 5, 10304 (2015)

    ADS  Google Scholar 

  36. O.S. Magana-Loaiza, I. De Leon, M. Mirhosseini, R. Fickler, A. Safari, U. Mick, B. McIntyre, P. Banzer, B. Rodenburg, G. Leuchs, et al., Exotic looped trajectories of photons in three-slit interference. Nat. Commun. 7, 13987 (2016)

    ADS  Google Scholar 

  37. J.Q. Quach, Which-way double-slit experiments and born-rule violation. Phys. Rev. A. 95, 042129 (2017)

    ADS  Google Scholar 

  38. R.P. Feynman, space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)

    ADS  MathSciNet  MATH  Google Scholar 

  39. A.V. Wijngaarden, W.L. Scheen. Table of Fresnel Integrals (Verhandl. Konink. Ned. Akad.Wetenschapen., Amsterdam, 1949)

    MATH  Google Scholar 

  40. R. Hangelbroek, Numerical approximation of Fresnel integrals by means of Chebyshev polynomials. J. Eng. Math. 1, 37–50 (1967)

    MathSciNet  MATH  Google Scholar 

  41. R. Bulirsch, Numerical calculation of the sine, cosine and Fresnel integrals. Numer. Math. 9, 380–385 (1967)

    MathSciNet  Google Scholar 

  42. M. Born, Quantenmechanik der stoßvorgänge. Z. Phys. 38, 803–827 (1926)

    ADS  MATH  Google Scholar 

  43. T.H. Boyer, Classical electromagnetic deflections and lag effects associated with quantum interference pattern shifts: considerations related to the Aharonov-Bohm effect. Phys. Rev. D. 8, 1679 (1973)

    ADS  Google Scholar 

  44. J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, Quantum superposition of distinct macroscopic states. Nature. 406, 43–46 (2000)

    ADS  Google Scholar 

  45. C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, J.E. Mooij, Quantum superposition of macroscopic persistent-current states. Nature. 290, 773–777 (2000)

    Google Scholar 

  46. A.V.N.V.V. Aristov, Quantum computation and hidden variables. Proc. SPIE. 7023, 702302 (2008)

    Google Scholar 

  47. F.K. Wilhelm, M.J. Storcz, C.H. van der Wal, C.J.P.M. Harmans, J.E. Mooij, in Decoherence of flux qubits coupled to electronic circuits. Advances in Solid State Physics (Springer, Berlin, 2003), pp. 763–780

  48. J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. Van der Wal, S. Lloyd, Josephson persistent-current qubit. Science. 285, 1036–1039 (1999)

    Google Scholar 

  49. T.P. Orlando, S. Lloyd, L.S. Levitov, K.K. Berggren, M.J. Feldman, M.F. Bocko, J.E. Mooij, C.J.P. Harmans, C.H. van der Wal, Flux-based superconducting qubits for quantum computation. Phys. C. 372, 194–200 (2002)

    ADS  Google Scholar 

  50. T.P. Orlando, L. Tian, D.S. Crankshaw, S. Lloyd, C.H. van der Wal, J.E. Mooij, F. Wilhelm, Engineering the quantum measurement process for the persistent current qubit. Phys. C. 368, 294–299 (2002)

    ADS  Google Scholar 

  51. T.P. Orlando, J.E. Mooij, L. Tian, C. van der Wal, L.S. Levitov, S. Lloyd, J.J. Mazo, Superconducting persistent-current qubit. Phys. Rev. B. 60, 15398 (1999)

    ADS  Google Scholar 

  52. L. Tian, L.S. Levitov, C.H. van der Wal, J.E. Mooij, T.P. Orlando, S. Lloyd, C.J.P.M. Harmans, J.J. Mazo, in Decoherence of the superconducting persistent current qubit. Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics (Springer, Dordrecht, 2000), pp. 429–438

  53. M. Bendahane, M. El Atiki, A. Kassou-Ou-Ali, Two-state magnetic field Aharonov–Bohm effect and the wave–particle duality in a Mach–Zehnder interferometer. International Journal of Quantum Information. 15, 1750032 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  54. C. Furtado, G. Duarte, Dual Aharonov–Bohm effect. Phys. Scr. 71, 7 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  55. J.P. Dowling, C.P. Williams, J.D. Franson, Maxwell duality Lorentz invariance, and topological phase. Phys. Rev. Lett. 83, 2486 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We wish to thank Alan Johnny Romanel Ambrozio for helpful communication during the preparation of this work. Simulations were performed in Mathematica Version 11.3, Wolfram Research, Champaign, IL.

Funding

This work has received partial financial supporting from CNPq (Brazil), CAPES (Brazil), and FAPES (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Assafrão.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assafrão, D., Favarato, C.C., Gonçalves, S.V.B. et al. The Double-Slit Electron Diffraction Experiment with Aharonov-Bohm Phase Effect Revisited and the Divergence in its Asymptotic Form. Braz J Phys 49, 301–313 (2019). https://doi.org/10.1007/s13538-019-00645-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00645-w

Keywords

Navigation