Skip to main content
Log in

Gravitational Holography and Trapped Surfaces

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We have previously discussed the characteristics of the gravitational waves (GW) and have, theoretically, shown that, like the corresponding electromagnetic (EM) waves, they also demonstrate, under certain conditions, holographic properties. In this work we have expanded this discussion and show that the assumed gravitational holographic images may, theoretically, be related to another property of GW’s which is their possible relation to singular (or nonsingular) trapped surfaces. We also show that this possibility may be, theoretically, related even to weak GW’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, B. et al. (2004). Analysis of first LIGO science data for stochastic gravitational waves, Physical Review D 69, 122004.

    Article  ADS  Google Scholar 

  • Abrahams, A. M. and Evans, C. R. (1992). Trapping a geon: Black hole formation by an imploding gravitational wave, Physical Review D 46, R4117.

    Article  ADS  Google Scholar 

  • Acernese, F. et al. (2002). Status of VIRGO, Classical Quantum Gravity 19, 1421.

    Article  ADS  Google Scholar 

  • Alcubierre, M., Allen, G., Brugmann, B., Lanfermann, G., Seidel, E., Suen, W. M., and Tobias, M. (2000). Gravitational collapse of gravitational waves in 3-D numerical relativity, Physical Review D 61, 041501.

    Article  ADS  Google Scholar 

  • Ando, M. and the TAMA collaboration (2002). Current status of TAMA, Classical Quantum Gravity 19, 1409.

    Article  ADS  Google Scholar 

  • Anninos, P., Masso, J., Seidel, E., Suen, W. M., and Tobias, M. (1997). Dynamics of gravitational waves in 3D: Formulations, methods and tests, Physical Review D 56, 842.

    Article  ADS  Google Scholar 

  • Arnowitt, R., Desser, S., and Misner, C. W. (1962). The dynamics of General Relativity, In: Gravitation: An Introduction to Current Research, Witten, L. (ed.), Wiley, New-York.

  • Bar, D. (2005). The gravitational wave holography, gr-qc/0509052, to be published in IJTP.

  • Beig, R. and Murchadha, N. O. (1991). Trapped surfaces due to concentration of gravitational radiation, Physical Review Letters 66, 2421.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Bergmann, P. G. (1976). Introduction to the Theory of Relativity, Dover, New York.

  • Bernstein, D., Hobill, D., Seidel, E., and Smarr, L. (1994). Initial data for the black hole plus Brill wave spacetime, Physical Review D 50, 3760.

    Article  ADS  MathSciNet  Google Scholar 

  • Brill, D. and Lindquist, R. W. (1963). Interaction energy in Geometrodynamics, Physical Review 131, 471–476.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Brill, D. R. (1959). On the positive definite mass of the Bondi-Weber-Wheeler time-symmetric gravitational waves, Annals of Physics 7, 466.

    Article  ADS  MathSciNet  Google Scholar 

  • Brill, D. R. (1964). Suppl. Nuovo. Cimento 2, 1–56.

    Google Scholar 

  • Brill, D. R. and Hartle, J. B. (1964). Method of the self-consistent field in General Relativity and its application to the gravitational geon, Physical Review B 135, 271.

    Article  ADS  MathSciNet  Google Scholar 

  • Collier, R. J., Burckhardt, C. B., and Lin, L.H. (1971). Optical Holography, Academic Press.

  • Danzmann, K. (1995). GEO-600 a 600-m laser interferometric gravitational wave antenna, In First Edoardo Amaldi Conference on Gravitational Wave Experiments, Coccia, E., Pizella, G., and Ronga, F., (eds.), World Scientific, Singapore.

  • Einstein, A. and Rosen, N. (1935). The particle problem in the general theory of relativity, Physical Review 48, 73.

    Article  MATH  ADS  Google Scholar 

  • Eppley, K. (1977). Evolution of time-symmetric gravitational waves: Initial data and apparent horizons, Physical Review D 16, 1609.

    Article  ADS  MathSciNet  Google Scholar 

  • Finkelstein, D. and Rodriguez, E. (1984). Relativity of topology and dynamics, International Journal of Theoretical Physics 23, 1065–1098.

    Article  ADS  MathSciNet  Google Scholar 

  • Gabor, D. (1948). A new microscopic Principle, Nature 161, 777.

    Google Scholar 

  • Gabor, D. (1949). Microscopy by reconstructed wavefronts, Proceedings of the Royal Society A 197, 454.

    MATH  Google Scholar 

  • Gabor, D. (1951). Microscopy by reconstructed wavefronts: II, Proceedings of the Royal Society B 64, 449.

    MATH  ADS  Google Scholar 

  • Gentle, A. P. (1999). Simplical Brill wave initial data, gr-qc/9901071.

  • Gentle, A. P., Holz, D. E., and Miller, W. A. (1998). Apparent horizons in simplical Brill wave initial data, gr-qc/9812057.

  • Hawking, S. W. and Ellis, G. F. R. (1973). The Large Scale Structure of Spacetime, Cambridge, London.

  • Kuchar, K. (1970). Ground state functional of the linearized gravitational field, Journal of Mathematical Physics 11, 3322.

    Article  Google Scholar 

  • Kuchar, K. (1971). Canonical quantization of cylindrical gravitational waves, Physical Review D 4, 955.

    Article  ADS  Google Scholar 

  • Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco.

  • Miyama, S. M. (1981). Time evolution of pure gravitational wave, Progress in Theoretical Physics 65, 894.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Nakamura, T. (1984). General solutions of the linearized Einstein equations and initial data for 3-D time evolution of pure gravitational waves, Progress in Theoretical Physics 72, 746.

    Article  MATH  ADS  Google Scholar 

  • Sorkin, R. D. (1986). Topology change and monopole creation, Physical Review D 33, 978.

    Article  ADS  MathSciNet  Google Scholar 

  • Spiegel, M. R. (1959). Vector Analysis, Schaum’s Outline Series, McGraw-hill, New-York.

  • Thorne, K. S. (1980a). Gravitational wave research: Current status and future prospect, Reviews of Modern Physics 52, 285.

    Article  ADS  MathSciNet  Google Scholar 

  • Thorne, K. S. (1980b). Multipole expansions of gravitational radiation, Reviews of Modern Physics 52, 299.

    Article  ADS  MathSciNet  Google Scholar 

  • Tipler, F. J. (1980). Singularities from colliding plane gravitational waves, Physical Review D 22, 2929.

    Article  ADS  MathSciNet  Google Scholar 

  • Urtsever, U. (1988a). Singularities in the collisions of almost-plane gravitational waves, Physical Review D 38, 1731.

    Article  ADS  Google Scholar 

  • Urtsever, U. (1988b). Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane wave spacetimes, Physical Review D 37, 2803.

    Article  ADS  Google Scholar 

  • Urtsever, U. (1989). Quantum field theory in a colliding plane-wave background, Physical Review D 40, 360.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bar.

Additional information

PACS: 42.40.-i, 04.20.Gz, 04.30.-w, 04.30.Nk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar, D. Gravitational Holography and Trapped Surfaces. Int J Theor Phys 46, 664–687 (2007). https://doi.org/10.1007/s10773-006-9232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-006-9232-y

Keywords

Navigation