Skip to main content
Log in

Saturation Dependence of Thermal Conductivity of Soils: Classification and Estimations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal conductivity is a key parameter governing heat transfer in rocks and soils with applications to geothermal systems and groundwater studies. Its accurate measurement is crucial to understand energy exchange in the Earth's subsurface. This study explores the application of the percolation-based effective-medium approximation (P-EMA) model to a broad range of soil types using a database including 158 soil samples. The P-EMA model for soil thermal conductivity, introduced by Ghanbarian and Daigle, is validated through robust optimization of its parameters and by comparing with the laboratory measurements where we find an excellent match between the theory and the experiments. A regression-based model is developed to estimate the P-EMA model parameters directly from other soil properties, such as sand, clay, bulk density, and thermal conductivities at completely dry and full saturation. The proposed regression-based relationships are evaluated using unseen data from two databases: one from Kansas containing 19 soil samples and another from Canada containing 40 soil samples. These regression-based relationships offer an approximation for the P-EMA model parameters, providing a practical approach to estimate the thermal conductivity of soils. Furthermore, a curve-clustering approach is proposed to classify soil thermal conductivity curves based on their similarities, providing insights into the heterogeneity of samples. We find seven clusters for each of which the average P-EMA model parameters are reported. The classification and regression models generally extend the seamless applicability of the P-EMA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data used in this study is available upon request from the corresponding author.

Abbreviations

P-EMA:

Percolation-based Effective-Medium Approximation

\({t}_{s}\) :

Scaling exponent

\(\lambda\) :

Thermal conductivity, W·m−1·°C−1

\(\Phi\) :

Porosity, cm3·cm−3

\({\rho }_{b}\) :

Bulk density, g·cm−3

\({\theta }_{c}\) :

Critical water content, cm3·cm−3

\(\theta\) :

Water content, cm3·cm−3

References

  1. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2. ed., repr (Clarendon Press, Oxford, 1986).

  2. P. Mohammadmoradi, A. Behrang, S. Taheri, A. Kantzas, Int. J. Therm. Sci. 112, 289 (2017)

    Article  Google Scholar 

  3. L. Lamarche, S. Kajl, B. Beauchamp, Geothermics 39, 187 (2010)

    Article  ADS  Google Scholar 

  4. A. Ebigbo, Doctoral Dissertation (2005).

  5. J.O. Lee, H. Choi, J.Y. Lee, Ann. Nucl. Energy 94, 848 (2016)

    Article  Google Scholar 

  6. D. Li, X. Sun, M. Khaleel, Metall. Mater. Trans. A 44, 61 (2013)

    Article  Google Scholar 

  7. N.H. Abu-Hamdeh, R.C. Reeder, Soil Science Soc of Amer J 64, 1285 (2000)

    Article  ADS  Google Scholar 

  8. T.E. Ochsner, R. Horton, T. Ren, Soil Science Soc of Amer J 65, 1641 (2001)

    Article  ADS  Google Scholar 

  9. Y. Dong, J.S. McCartney, N. Lu, Geotech. Geol. Eng. 33, 207 (2015)

    Article  Google Scholar 

  10. N. Zhang, Z. Wang, Int. J. Therm. Sci. 117, 172 (2017)

    Article  Google Scholar 

  11. K. L. Bristow, in SSSA Book Series, edited by J. H. Dane and G. Clarke Topp (Soil Science Society of America, Madison, WI, USA, 2018), pp. 1209–1226.

  12. S. Shiozawa, G.S. Campbell, Remote Sens. Rev. 5, 301 (1990)

    Article  Google Scholar 

  13. D.A. De Vries, Soil Sci. 73, 83 (1952)

    Article  ADS  Google Scholar 

  14. T. Nikiforova, M. Savytskyi, K. Limam, W. Bosschaerts, R. Belarbi, Energy Procedia 42, 775 (2013)

    Article  Google Scholar 

  15. G. Wessolek, K. Bohne, S. Trinks, Int. J. Thermophys. 44, 20 (2023)

    Article  ADS  Google Scholar 

  16. P. Cosenza, R. Guérin, A. Tabbagh, European J Soil Science 54, 581 (2003)

    Article  Google Scholar 

  17. K.L. Yu, R.M. Singh, A. Bouazza, H.H. Bui, Geotech. Geol. Eng. 33, 239 (2015)

    Article  Google Scholar 

  18. H. He, D. He, J. Jin, K.M. Smits, M. Dyck, Q. Wu, B. Si, J. Lv, Earth Sci. Rev. 211, 103419 (2020)

    Article  Google Scholar 

  19. H. He, G.N. Flerchinger, Y. Kojima, M. Dyck, J. Lv, Geoderma 382, 114694 (2021)

    Article  ADS  Google Scholar 

  20. D. J. Bergman and D. Stroud, in Solid State Physics (Elsevier, 1992), pp. 147–269.

  21. J. Wang, J.K. Carson, M.F. North, D.J. Cleland, Int. J. Heat Mass Transf. 49, 3075 (2006)

    Article  Google Scholar 

  22. A.S. Mickley, Trans. Am. Inst. Electr. Eng. 70, 1789 (1951)

    Article  Google Scholar 

  23. W. Woodside, J.H. Messmer, J. Appl. Phys. 32, 1688 (1961)

    Article  ADS  Google Scholar 

  24. F. Gori, S. Corasaniti, J. Heat Transfer 124, 1001 (2002)

    Article  Google Scholar 

  25. V.R. Tarnawski, W.H. Leong, Int. J. Thermophys. 33, 1191 (2012)

    Article  ADS  Google Scholar 

  26. V.R. Tarnawski, W.H. Leong, Int. J. Thermophys. 37, 18 (2016)

    Article  Google Scholar 

  27. M. Sadeghi, B. Ghanbarian, R. Horton, Water Resour. Res. 54, 1389 (2018)

    Article  ADS  Google Scholar 

  28. M. S. Kersten, (1949).

  29. D. A. De Vries, Physics of Plant Environment. 210 (1963).

  30. O. E. Johansen, in (Doctoral dissertation, Norwegian Institute of Technology, 1977).

  31. J. Côté, J.-M. Konrad, Can. Geotech. J. 42, 443 (2005)

    Article  Google Scholar 

  32. S. Lu, T. Ren, Y. Gong, R. Horton, Soil Science Soc of Amer J 71, 8 (2007)

    Article  ADS  Google Scholar 

  33. S.X. Chen, Heat Mass Transfer 44, 1241 (2008)

    Article  ADS  Google Scholar 

  34. H. He, Y. Zhao, M.F. Dyck, B. Si, H. Jin, J. Lv, J. Wang, Acta Geotech. 12, 1281 (2017)

    Article  Google Scholar 

  35. Y. Lu, S. Lu, R. Horton, T. Ren, Soil Sci. Soc. Am. J. 78, 1859 (2014)

    Article  ADS  Google Scholar 

  36. V.R. Tarnawski, W.H. Leong, M. McCombie, G. Bovesecchi, Int. J. Thermophys. 43, 182 (2022)

    Article  ADS  Google Scholar 

  37. W. Liu, R. Li, T. Wu, X. Shi, L. Zhao, X. Wu, G. Hu, J. Yao, Y. Xiao, J. Ma, Y. Jiao, S. Wang, Int. J. Therm. Sci. 190, 108301 (2023)

    Article  Google Scholar 

  38. Y. Du, R. Li, T. Wu, C. Yang, L. Zhao, G. Hu, Y. Xiao, S. Yang, J. Ni, J. Ma, J. Shi, Y. Qiao, Int. J. Therm. Sci. 176, 107487 (2022)

    Article  Google Scholar 

  39. Y. Fu, B. Ghanbarian, R. Horton, J. Heitman, Geoderma 438, 116631 (2023)

    Article  ADS  Google Scholar 

  40. V.R. Tarnawski, P. Coppa, W.H. Leong, M. McCombie, G. Bovesecchi, Int. J. Therm. Sci. 156, 106493 (2020)

    Article  Google Scholar 

  41. N. Zhang, H. Zou, L. Zhang, A.J. Puppala, S. Liu, G. Cai, Int. J. Therm. Sci. 155, 106414 (2020)

    Article  Google Scholar 

  42. W. Fei, G.A. Narsilio, M.M. Disfani, Int. J. Heat Mass Transf. 170, 120997 (2021)

    Article  Google Scholar 

  43. N. Kardani, A. Bardhan, P. Samui, M. Nazem, P.G. Asteris, A. Zhou, Int. J. Therm. Sci. 173, 107427 (2022)

    Article  Google Scholar 

  44. T. Zhao, S. Liu, J. Xu, H. He, D. Wang, R. Horton, G. Liu, Agric. For. Meteorol. 323, 109080 (2022)

    Article  Google Scholar 

  45. S.I.S. Al-Hawary, I. Muda, B.T. Sayed, M.N. Fenjan, A.K. Kareem, Int. J. Thermophys. 44, 115 (2023)

    Article  ADS  Google Scholar 

  46. R. Mustafa, K. Kumari, S. Kumari, G. Kumar, P. Singh, Arab. J. Geosci. 17, 22 (2024)

    Article  Google Scholar 

  47. P. Lehmann, Transp. Porous Media 52, 313 (2003)

    Article  Google Scholar 

  48. Y. Feng, B. Yu, M. Zou, D. Zhang, J. Phys. D Appl. Phys. 37, 3030 (2004)

    Article  ADS  Google Scholar 

  49. L.-C. Feng, N. Xie, W.-Z. Shao, L.-X. Lu, L. Zhen, J. Zhao, Compos. B Eng. 92, 377 (2016)

    Article  Google Scholar 

  50. T. Xiao, J. Guo, X. Yang, K. Hooman, T.J. Lu, Int. J. Therm. Sci. 172, 107270 (2022)

    Article  Google Scholar 

  51. W. Chen, Y. Wang, D. Wang, Y. Liu, J. Liu, Int. J. Therm. Sci. 184, 107985 (2023)

    Article  Google Scholar 

  52. S.-J. Feng, H. Chen, J. Hydrol. 628, 130514 (2024)

    Article  Google Scholar 

  53. R.W. Zimmerman, J. Petrol. Sci. Eng. 3, 219 (1989)

    Article  Google Scholar 

  54. P.M. Hui, X. Zhang, A.J. Markworth, D. Stroud, J. Mater. Sci. 34, 5497 (1999)

    Article  ADS  Google Scholar 

  55. A. Hunt, R. Ewing, B. Ghanbarian, Percolation Theory for Flow in Porous Media (Springer, Cham, 2014)

    Book  Google Scholar 

  56. D.S. McLachlan, J. Phys. C Solid State Phys. 20, 865 (1987)

    Article  ADS  Google Scholar 

  57. B. Ghanbarian, H. Daigle, Water Resour. Res. 52, 295 (2016)

    Article  ADS  Google Scholar 

  58. S. Chung, R. Horton, Water Resour. Res. 23, 2175 (1987)

    Article  ADS  Google Scholar 

  59. J. Šimůnek, M. T. Van Genuchten, and M. Šejna, Technical Manual, Version 1, 241 (2006).

  60. Y. Fu, B. Ghanbarian, R. Horton, J. Heitman, Vadose Zone Journal 23, e20297 (2024)

    Article  Google Scholar 

  61. M. Sadeghi, B. Ghahraman, A.W. Warrick, M. Tuller, S.B. Jones, Water Resour. Res. 52, 3829 (2016)

    Article  ADS  Google Scholar 

  62. A. Markert, A. Peters, G. Wessolek, Soil Sci. Soc. Am. J. 80, 275 (2016)

    Article  ADS  Google Scholar 

  63. A. Markert, K. Bohne, M. Facklam, G. Wessolek, Soil Sci. Soc. Am. J. 81, 1315 (2017)

    Article  ADS  Google Scholar 

  64. N. Parker, G.J. Kluitenberg, C. Redmond, A. Patrignani, Soil Sci. Soc. Am. J. 86, 1495 (2022)

    Article  ADS  Google Scholar 

  65. A. Patrignani, B. Ghanbarian, G.J. Kluitenberg, N. Parker, Soil Sci. Soc. Am. J. 87, 1275 (2023)

    Article  ADS  Google Scholar 

  66. V.R. Tarnawski, T. Momose, M.L. McCombie, W.H. Leong, Int. J. Thermophys. 36, 119 (2015)

    Article  ADS  Google Scholar 

  67. V.R. Tarnawski, T. Momose, W.H. Leong, G. Bovesecchi, P. Coppa, Int. J. Thermophys. 30, 949 (2009)

    Article  ADS  Google Scholar 

  68. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. Van Der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. Van Mulbregt, SciPy 1.0 Contributors, A. Vijaykumar, A. P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A. Price, G.-L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger, J. V. De Miranda Cardoso, J. Reimer, J. Harrington, J. L. C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko, and Y. Vázquez-Baeza, Nat. Methods 17, 261 (2020)

  69. D. Stauffer and A. Aharony, Introduction To Percolation Theory, 2nd ed. (Taylor & Francis, 2018)

  70. M. Sahimi, S. Mukhopadhyay, Phys. Rev. E 54, 3870 (1996)

    Article  ADS  Google Scholar 

  71. A. Saxena, M. Prasad, A. Gupta, N. Bharill, O.P. Patel, A. Tiwari, M.J. Er, W. Ding, C.-T. Lin, Neurocomputing 267, 664 (2017)

    Article  Google Scholar 

  72. S. J. Gaffney, Probabilistic Curve -Aligned Clustering and Prediction with Regression Mixture Models, Ph.D., University of California, Irvine, 2004.

  73. B. Ghanbarian and B. A. Yokeley, Water Resources Research 57, e2021WR030095 (2021).

  74. B.A. Yokeley, B. Ghanbarian, M. Sahimi, SPE J. 26, 3893 (2021)

    Article  Google Scholar 

  75. M. S. Kersten, in Proceedings, Highway Research Board (1948), pp. 391–409.

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Tobi Ore—Methodology, Formal Analysis, Investigation, Validation, Writing—Original Draft, Review and Editing, Visualization; Behzad Ghanbarian—Conceptualization, Methodology, Investigation, Validation, Resources, Supervision, Writing – Review and Editing; Klaus Bohne—Resources, Writing—Review and Editing; and Gerd Wessolek—Resources, Writing—Review and Editing.

Corresponding author

Correspondence to Tobi Ore.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ore, T., Ghanbarian, B., Bohne, K. et al. Saturation Dependence of Thermal Conductivity of Soils: Classification and Estimations. Int J Thermophys 45, 81 (2024). https://doi.org/10.1007/s10765-024-03375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03375-7

Keywords

Navigation