Skip to main content
Log in

Prediction of Greenhouse Gas Solubility in Eutectic Solvents Using COSMO-RS

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Over the past few years, eutectic solvents (ESs) have drawn the scientific community's attention because they are usually more environmentally friendly than traditional organic solvents. One of the applications of ESs is in the gas capture field, where they are considered promising absorbers to replace amine- (MEA, DEA, or MDEA processes), methanol- (Rectisol process), dimethyl ethers of polyethylene glycol- (Selexol process), N-methyl-2-pyrrolidone- (Purisol process), propylene carbonate- (Fluor solvent process), or morpholine-based (Morphysorb process) solvents on CO2 capture from the atmosphere. Although several studies have reported experimental gas solubility data in ESs, especially for CO2, only a few existing options are covered. In fact, resorting to experimental methods to obtain the solubility data seems unfeasible considering the vast number of possible eutectic mixtures. Therewith, theoretical predictions of gas solubility in ESs are valuable for the fast pre-screening of prospective solvents. In this work, the ability of the thermodynamic model COSMO-RS to represent solubility data of CO2, CH4, and H2S in 17 choline chloride-based (ChCl) ESs was evaluated. The experimental data were collected from the literature at different molar ratios, at 298.15 K or 313.15 K, and in the pressure range from 1 to 125 bar. COSMO-RS offers a qualitative description of these gases' solubility, which was expected due to the model's fully predictive character. To improve the CO2 and CH4 solubility data description, a temperature–pressure-dependent correction was applied to the COSMO-RS predictions for these gases, offering a global average relative deviation of 15%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. C.A. Marques, A.A.S.C. Machado, Found. Chem. 16, 125 (2014)

    Article  Google Scholar 

  2. P. Anastas, N. Eghbali, Chem. Soc. Rev. 39, 301 (2010)

    Article  Google Scholar 

  3. A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, ACS Sustain. Chem. Eng. 2, 1063 (2014)

    Article  Google Scholar 

  4. S. Cherukuvada, A. Nangia, Chem. Commun. 50, 906 (2014)

    Article  Google Scholar 

  5. G. García, M. Atilhan, S. Aparicio, Int. J. Greenhouse Gas Control 39, 62 (2015)

    Article  Google Scholar 

  6. M.A.R. Martins, S.P. Pinho, J.A.P. Coutinho, J. Solut. Chem. 48, 1 (2018)

    Google Scholar 

  7. B. Singh, H. Lobo, G. Shankarling, Catal Letters 141, 178 (2011)

    Article  Google Scholar 

  8. Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Chem. Soc. Rev. 41, 7108 (2012)

    Article  Google Scholar 

  9. B. Tang, K.H. Row, Monatsh. Chem. 144, 1427 (2013)

    Article  Google Scholar 

  10. D. Carriazo, M.C. Serrano, M.C. Gutiérrez, M.L. Ferrer, F. del Monte, Chem. Soc. Rev. 41, 4996 (2012)

    Article  Google Scholar 

  11. H. Ghaedi, M. Ayoub, S. Sufian, G. Murshid, S. Farrukh, A.M. Shariff, Int. J. Greenhouse Gas Control 66, 147 (2017)

    Article  Google Scholar 

  12. H. Cheng, Z. Qi, Sep. Purif. Technol. 274, 119027 (2021)

    Article  Google Scholar 

  13. V. Sivabalan, N. Hasnor, B. Lal, Z. Kassim, A.S. Maulud, Appl. Sci. (Switz.) 10, 25 (2020)

    Google Scholar 

  14. D. Lee, W. Go, J. Oh, J. Lee, I. Jo, K.S. Kim, Y. Seo, Chem. Eng. J. 399, 125830 (2020)

    Article  Google Scholar 

  15. Y. Liao, S. Gong, G. Wang, T. Wu, X. Meng, Q. Huang, Y. Su, F. Wu, R.M. Kelly, SSRN Electron. J. 69, 806–812 (2022)

    Google Scholar 

  16. Z. Wang, M. Cheng, J. Bu, L. Cheng, J. Ru, Y. Hua, D. Wang, Adv. Powder Technol. 33, 103670 (2022)

    Article  Google Scholar 

  17. E.L. Smith, A.P. Abbott, K.S. Ryder, Chem. Rev. 114, 11060 (2014)

    Article  Google Scholar 

  18. R. Zhao, D. Pei, P. Yu, J. Wei, N. Wang, D. Di, Y. Liu, J. Sep. Sci. 43, 348 (2020)

    Article  Google Scholar 

  19. F.O. Farias, F.H.B. Sosa, L. Igarashi-Mafra, J.A.P. Coutinho, M.R. Mafra, Fluid Phase Equilib. 448, 143 (2017)

    Article  Google Scholar 

  20. G. Ansarypur, M. Bayareh, A. Jahangiri, J. Therm. Anal. Calorim. 147, 1689 (2022)

    Article  Google Scholar 

  21. M.B. Haider, R. Kumar, Sep. Purif. Technol. 248, 117055 (2020)

    Article  Google Scholar 

  22. A. Tatar, A. Barati-Harooni, A. Najafi-Marghmaleki, A. Bahadori, Int. J. Greenh. Gas Control 58, 212 (2017)

    Article  Google Scholar 

  23. F. Luo, X. Liu, S. Chen, Y. Song, X. Yi, C. Xue, L. Sun, J. Li, ACS Sustain. Chem. Eng. 9, 10250 (2021)

    Article  Google Scholar 

  24. O. Alioui, Y. Benguerba, I.M. Alnashef, J. Mol. Liq. 307, 113005 (2020)

    Article  Google Scholar 

  25. International Energy Agency, Global Energy Review: CO2 Emissions in 2021 Global Emissions Rebound Sharply to Highest Ever Level (2022).

  26. D.A. Lashof, D.R. Ahuja, Nature 344, 529 (1990)

    Article  ADS  Google Scholar 

  27. M. Höök, X. Tang, Energy Policy 52, 797 (2013)

    Article  Google Scholar 

  28. G. García, S. Aparicio, R. Ullah, M. Atilhan, Energy Fuels 29, 2616 (2015)

    Article  Google Scholar 

  29. G. Luderer, V. Bosetti, M. Jakob, M. Leimbach, J.C. Steckel, H. Waisman, O. Edenhofer, Clim. Change 114, 9 (2012)

    Article  ADS  Google Scholar 

  30. F. Petrakopoulou, G. Tsatsaronis, Energy Fuels 28, 5327 (2014)

    Article  Google Scholar 

  31. J. de Riva, J. Suarez-Reyes, D. Moreno, I. Díaz, V. Ferro, J. Palomar, Int. J. Greenh. Gas Control 61, 61 (2017)

    Article  Google Scholar 

  32. Y. Wang, L. Zhao, A. Otto, M. Robinius, D. Stolten, Energy Procedia 114, 650 (2017)

    Article  Google Scholar 

  33. F.P. Pelaquim, A.M.B. Neto, I.A.L. Dalmolin, M.C. da Costa, Ind. Eng. Chem. Res. 1, 00947 (2021)

    Google Scholar 

  34. X. Liu, B. Gao, Y. Jiang, N. Ai, D. Deng, J. Chem. Eng. Data 62, 1448 (2017)

    Article  Google Scholar 

  35. H. Ghaedi, M. Ayoub, S. Sufian, A.M. Shariff, S.M. Hailegiorgis, S.N. Khan, J. Mol. Liq. 243, 564 (2017)

    Article  Google Scholar 

  36. N. Ramzan, M. Rizwan, M. Zaman, M. Adnan, A. Ullah, A. Gungor, U. Shakeel, A. ul Haq, Int. J. Energy Res. 46, 23775–23795 (2022)

    Article  Google Scholar 

  37. K.H. Smith, H.E. Ashkanani, B.I. Morsi, N.S. Siefert, Int. J. Greenh. Gas Control 118, 103694 (2022)

    Article  Google Scholar 

  38. G. Siani, M. Tiecco, P. Di Profio, S. Guernelli, A. Fontana, M. Ciulla, V. Canale, J. Mol. Liq. 315, 1 (2020)

    Article  Google Scholar 

  39. H. Qin, Z. Song, H. Cheng, L. Deng, Z. Qi, J. Mol. Liq. 326, 1 (2021)

    Article  Google Scholar 

  40. X. Liu, Q. Ao, S. Shi, S. Li, Mater. Res. Express 9, 015504 (2022)

    Article  ADS  Google Scholar 

  41. Y. Liu, H. Yu, Y. Sun, S. Zeng, X. Zhang, Y. Nie, S. Zhang, X. Ji, Front. Chem. 8, 1 (2020)

    Article  Google Scholar 

  42. J. Wang, Z. Song, L. Chen, T. Xu, L. Deng, Z. Qi, Green Chemical Eng. 2, 431 (2021)

    Article  Google Scholar 

  43. A. Kamgar, S. Mohsenpour, F. Esmaeilzadeh, J. Mol. Liq. 247, 70 (2017)

    Article  Google Scholar 

  44. R. Haghbakhsh, S. Raeissi, J. Chem. Eng. Data 63, 897 (2017)

    Article  Google Scholar 

  45. R. Haghbakhsh, M. Keshtkar, A. Shariati, S. Raeissi, J. Mol. Liq. 330, 1 (2021)

    Article  Google Scholar 

  46. F.P. Pelaquim, R.G. Bitencourt, A.M.B. Neto, I.A.L. Dalmolin, M.C. da Costa, Process. Saf. Environ. Prot. 163, 14 (2022)

    Article  Google Scholar 

  47. F. Rabhi, F. Mutelet, H. Sifaoui, J. Chem. Eng. Data 66, 702 (2021)

    Article  Google Scholar 

  48. M.B. Haider, D. Jha, R. Kumar, M. Sivagnanam, Int. J. Greenh. Gas Control 92, 1 (2020)

    Article  Google Scholar 

  49. A. Klamt, J. Phys. Chem. 99, 2224 (1995)

    Article  Google Scholar 

  50. A. Klamt, V. Jonas, T. Bürger, J.C.W. Lohrenz, J. Phys. Chem. A 102, 5074 (1998)

    Article  Google Scholar 

  51. F. Eckert, A. Klamt, AIChE J. 48, 369 (2002)

    Article  ADS  Google Scholar 

  52. H. Cheng, C. Liu, J. Zhang, L. Chen, B. Zhang, Z. Qi, Chem. Eng. Process. 125, 246 (2018)

    Article  Google Scholar 

  53. K.A. Kurnia, S.P. Pinho, J.A.P. Coutinho, Ind. Eng. Chem. Res. 53, 12466 (2014)

    Article  Google Scholar 

  54. K. Paduszyński, Phys. Chem. Chem. Phys. 19, 11835 (2017)

    Article  Google Scholar 

  55. T. Aissaoui, I.M. AlNashef, Int. J. Chem. Mol. Eng. 11, 54007 (2017)

    Google Scholar 

  56. K. Xin, F. Gallucci, M. van Sintannaland, ACS Sustain. Chem. Eng. 10, 15284 (2022)

    Article  Google Scholar 

  57. Z. Song, X. Hu, H. Wu, M. Mei, S. Linke, T. Zhou, Z. Qi, K. Sundmacher, ACS Sustain. Chem. Eng. 8, 8741 (2020)

    Article  Google Scholar 

  58. H. Qin, Z. Song, H. Cheng, L. Deng, Z. Qi, J. Mol. Liq. 326, 115292 (2021)

    Article  Google Scholar 

  59. A. Al-Bodour, N. Alomari, S. Aparicio, M. Atilhan, J. Mol. Liq. 390, 123114 (2023)

    Article  Google Scholar 

  60. M. Mohan, O. Demerdash, B.A. Simmons, J.C. Smith, M.K. Kidder, S. Singh, Green Chem. 25, 3475 (2023)

    Article  Google Scholar 

  61. R.B. Leron, M.H. Li, Thermochim. Acta 551, 14 (2013)

    Article  ADS  Google Scholar 

  62. R.B. Leron, M.H. Li, J. Chem. Thermodyn. 57, 131 (2013)

    Article  Google Scholar 

  63. Y. Ji, Y. Hou, S. Ren, C. Yao, W. Wu, Fluid Phase Equilib. 429, 14 (2016)

    Article  Google Scholar 

  64. G. Li, D. Deng, Y. Chen, H. Shan, N. Ai, J. Chem. Thermodyn. 75, 58 (2014)

    Article  Google Scholar 

  65. X. Li, M. Hou, B. Han, X. Wang, L. Zou, J. Chem. Eng. Data 53, 548 (2008)

    Article  Google Scholar 

  66. F. Liu, W. Chen, J. Mi, J.Y. Zhang, X. Kan, F.Y. Zhong, K. Huang, A.M. Zheng, L. Jiang, AIChE J. 65, 1 (2019)

    Article  Google Scholar 

  67. Y. Chen, N. Ai, G. Li, H. Shan, Y. Cui, D. Deng, J. Chem. Eng. Data 59, 1247 (2014)

    Article  Google Scholar 

  68. M. Lu, G. Han, Y. Jiang, X. Zhang, D. Deng, N. Ai, J. Chem. Thermodyn. 88, 72 (2015)

    Article  Google Scholar 

  69. T. Altamash, A.I. Amhamed, S. Aparicio, M. Atilhan, Ind. Eng. Chem. Res. 58, 8097 (2019)

    Article  Google Scholar 

  70. B. COSMOtherm, Release 2021 (2021).

  71. C. Steffen, K. Thomas, U. Huniar, A. Hellweg, O. Rubner, A. Schroer, J. Comput. Chem. 31, 2967 (2010)

    Article  Google Scholar 

  72. M. Diedenhofen, A. Klamt, Fluid Phase Equilib. 294, 31 (2010)

    Article  Google Scholar 

  73. B. COSMOtherm, Reference Manual (2021).

  74. L. Moity, M. Durand, A. Benazzouz, C. Pierlot, V. Molinier, J.M. Aubry, Green Chem. 14, 1132 (2012)

    Article  Google Scholar 

  75. Y. Liu, Z. Dai, Z. Zhang, S. Zeng, F. Li, X. Zhang, Y. Nie, L. Zhang, S. Zhang, X. Ji, Green Energy Environ. 6, 314 (2021)

    Article  Google Scholar 

  76. J. Zhu, H. Shao, L. Feng, Y. Lu, H. Meng, C. Li, J. Mol. Liq. 341, 116928 (2021)

    Article  Google Scholar 

  77. P. Zhang, W. Xiong, M. Shi, Z. Tu, X. Hu, X. Zhang, Y. Wu, Chem. Eng. J. 438, 135626 (2022)

    Article  Google Scholar 

  78. D. Yang, M. Hou, H. Ning, J. Zhang, J. Ma, G. Yang, B. Han, Green Chem. 15, 2261 (2013)

    Article  Google Scholar 

  79. X. Liu, B. Gao, D. Deng, Sep. Sci. Technol. (Phila.) 53, 2150 (2018)

    Article  Google Scholar 

  80. J. Zhang, L. Yu, R. Gong, M. Li, H. Ren, E. Duan, Energy Fuels 34, 47 (2020)

    Google Scholar 

  81. X. Yang, Y. Zhang, F. Liu, P. Chen, T. Zhao, Y. Wu, Sep. Purif. Technol. 250, 1 (2020)

    Google Scholar 

  82. S. Sun, Y. Niu, Q. Xu, Z. Sun, X. Wei, Ind. Eng. Chem. Res. 54, 8019 (2015)

    Article  Google Scholar 

  83. S. Hou, C. Zhang, B. Jiang, H. Zhang, L. Zhang, N. Yang, N. Zhang, X. Xiao, X. Tantai, ACS Sustain. Chem. Eng. 8, 16241 (2020)

    Article  Google Scholar 

  84. Y. Chen, B. Jiang, H. Dou, L. Zhang, X. Tantai, Y. Sun, Energy Fuels 32, 10737 (2018)

    Article  Google Scholar 

  85. D. Deng, X. Liu, B. Gao, Ind. Eng. Chem. Res. 56, 13850 (2017)

    Article  Google Scholar 

  86. G. Cui, J. Liu, S. Lyu, H. Wang, Z. Li, J. Wang, ACS Sustain Chem Eng 7, 14236 (2019)

    Article  Google Scholar 

  87. X. Wu, R. Guan, W.T. Zheng, K. Huang, J. Taiwan Inst. Chem. Eng. 119, 45 (2021)

    Article  Google Scholar 

  88. D. Deng, C. Zhang, X. Deng, L. Gong, Energy Fuels 34, 665 (2020)

    Article  Google Scholar 

  89. A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, R. Soc. Chem. 70, 71 (2003)

    Google Scholar 

  90. X. Liu, T. Zhou, X. Zhang, S. Zhang, X. Liang, R. Gani, G.M. Kontogeorgis, Chem. Eng. Sci. 192, 816 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the São Paulo Research Foundation (FAPESP—2018/19198-9 and 2014/21252-0), Coordination for the Improvement of Higher Education Personnel—Brasil (CAPES)—Finance Code 001, the National Council for Scientific and Technological Development (CNPq—312848/2023-4), and the Fund for the Support of Education, Research and Extension (FAEPEX/ UNICAMP) for the financial support. The authors also thank the Human Resources Program of the National Agency of Petroleum, Natural Gas and Biofuels (PRH-ANP). This work was developed within the scope of the project CICECO Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC).

Author information

Authors and Affiliations

Authors

Contributions

Fernanda Paludetto Pelaquim: Conceptualization, Writing—Original Draft, Validation, Formal analysis, Investigation. Sérgio M. Vilas-Boas: Validation, Formal analysis, Writing—Review & Editing. Débora Costa do Nascimento: Formal analysis, Writing—Review & Editing. Pedro J. Carvalho: Writing—Review & Editing, Resources. Antonio Marinho Barbosa Neto: Writing—Review & Editing. Mariana Conceição da Costa: Supervision, Funding acquisition, Project administration, Writing—Review & Editing.

Corresponding author

Correspondence to Mariana Conceição da Costa.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 327 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelaquim, F.P., Vilas-Boas, S.M., do Nascimento, D.C. et al. Prediction of Greenhouse Gas Solubility in Eutectic Solvents Using COSMO-RS. Int J Thermophys 45, 70 (2024). https://doi.org/10.1007/s10765-024-03363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03363-x

Keywords

Navigation