Skip to main content
Log in

An Equation of State for the Thermodynamic Properties of Fluid n-Butane in the Critical Region

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An equation of state that predicts the critical thermodynamic behavior of n-butane is formulated. This equation takes into account the global behavior that includes the singular thermodynamic behavior asymptotically close to the critical point and the crossover to the regular thermodynamic behavior far away from the critical point. The formulated equation is based on the transformation of a truncated classical Landau expansion and represents the thermodynamic properties of n-butane in a wide range of temperatures and densities around the critical point. A comparison of the pressure P–ρ–T data measured by Beattie and co-workers and those calculated with the crossover EOS is made. Finally, the specific heat at constant volume, Cv, for n-butane along the critical density within a restricted temperature interval around the critical point is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. M. Lanza, P.M. Ndiaye, F.W. Tavares, D. Oliveira, C. Dariva, J.V. Oliveira, J. Super Fluid 34, 215 (2005)

    Article  Google Scholar 

  2. R.T. Kurnik, A.J. Barduhn, Desalination 26, 211 (1978)

    Article  Google Scholar 

  3. V. Saraf, E. Kiran, Polymer 29, 2061 (1988)

    Article  Google Scholar 

  4. H. Miyamoto, M. Uematsu, J. Chem. Thermodynamics 39, 827 (2007)

    Article  Google Scholar 

  5. A.S. Teja, A. Singh, Cryogenics 17, 591 (1977)

    Article  ADS  Google Scholar 

  6. B.A. Younglove, J.F. Ely, J. Phys. Chem. Ref. Data 16, 577 (1987)

    Article  ADS  Google Scholar 

  7. H. Miyamoto, K. Watanabe, Int. J. Thermophys. 22, 459 (2001)

    Article  Google Scholar 

  8. R. Span, W. Wagner, Int. J. Thermophys. 24, 41 (2003)

    Article  Google Scholar 

  9. A.E. Hawary, K. Meier, Int. J. Thermophys. 43, 71 (2022). https://doi.org/10.1007/s10765-021-02958-y

    Article  ADS  Google Scholar 

  10. D. Bücker, W. Wagner, J. Phys. Chem. Ref. Data 35, 929 (2006). https://doi.org/10.1063/1.1901687

    Article  ADS  Google Scholar 

  11. Z.Y. Chen, A. Abbaci, S. Tang, J.V. Sengers, Phys. Rev. A 42, 4470 (1990)

    Article  ADS  Google Scholar 

  12. A. Abbaci, J. Mol. Liq. 18, 31 (2005)

    Article  Google Scholar 

  13. A. Rizi, A. Abbaci, J. Mol. Liq. 171, 64 (2012)

    Article  Google Scholar 

  14. A. Abbaci, A. Rizi, I.M. Abdulagatov, Thermochim. Acta 567, 65 (2013)

    Article  Google Scholar 

  15. S. Ladjama, A. Abbaci, Eur. Phys. J. Spec. Top. (2016). https://doi.org/10.1140/epjst/e2016-60219-9

    Article  Google Scholar 

  16. A. Abbaci, A. Berrezeg, Int. J. Thermophys. 25, 739 (2004). https://doi.org/10.1023/B:IJOT.0000034235.06616.97

    Article  ADS  Google Scholar 

  17. S. Ladjama, A. Abbaci, A. Rizi, Int. J. Thermophys. 42, 105 (2021). https://doi.org/10.1007/s10765-021-02833-w

    Article  ADS  Google Scholar 

  18. J.A. Beattie, G.L. Simard, G.-J. Su, J. Am. Chem. Soc. 61, 24 (1939)

    Article  Google Scholar 

  19. J.A. Beattie, G.L. Simard, G.-J. Su, J. Am. Chem. Soc. 61, 26 (1939)

    Article  Google Scholar 

  20. W.B. Kay, Ind. Eng. Chem. 32, 358 (1940)

    Article  Google Scholar 

  21. R. D. Goodwin, Natl. Bur. Stand. (US) Int. Rep., 79 (1979)

  22. K.A. Kobe, R.E. Lynn, Chem. Rev. 52, 117 (1953)

    Article  Google Scholar 

  23. A.P. Kudchadker, G.H. Alani, B. Zwolinski, Chem. Rev. 68, 659 (1968)

    Article  Google Scholar 

  24. T.R. Das, C.O. Reed, P.T. Eubank, Chem. Eng. Data 18, 244 (1973)

    Article  Google Scholar 

  25. R. H. Olds, H. H. Reamer, B. H. Sage, W. N., Ind. Eng. Chem., 36(3), 282 (1944)

  26. W.M. Haynes, J. Chem. Thermodyn. 15, 801 (1983)

    Article  Google Scholar 

  27. S. Glos, R. Kleinrahm, W. Wagner, J. Chem. Thermodyn. 36, 1037 (2004)

    Article  Google Scholar 

  28. H. Miyamoto, M. Uematsu, J. Chem. Thermodyn. 39, 588 (2007)

    Article  Google Scholar 

  29. H. Miyamoto, M. Uematsu, J. Chem. Thermodyn. 39, 827 (2007)

    Article  Google Scholar 

  30. Y. Kayukawa, M. Hasumoto, Y. Kano, K. Watanabe, J. Chem. Eng. Data 50, 556 (2005)

    Article  Google Scholar 

  31. H. Kratzke, E. Spilling, S. Muller, J. Chem. Thermodyn. 14, 1175 (1982)

    Article  Google Scholar 

  32. I.S. Yeo, K.H. Lim, J. Ind. Eng. Chem. 20, 2984 (2014)

    Article  Google Scholar 

  33. B. Le Neindre, Y. Garrabos, Fluid Phase Equilib. 198, 165 (2002)

    Article  Google Scholar 

  34. D. Broseta, Y. Melean, C. Miqueu, Fluid Phase Equilib. 233, 86 (2005)

    Article  Google Scholar 

  35. J.W. Magee, T.O.D. Lüddecke, Int. J. Thermophys. 19, 129 (1998)

    Article  Google Scholar 

  36. J.G. Aston, G.H. Messerly, J. Am. Chem. Soc. 62, 1917 (1940)

    Article  Google Scholar 

  37. B.P. Dailey, W.A. Felsing, J. Am. Chem. Soc. 65, 44 (1943)

    Article  Google Scholar 

  38. O. Beeck, J. Chem. Phys. 4, 680 (1936)

    Article  ADS  Google Scholar 

  39. C.J. Dobratz, Ind. Eng. Chem. 33, 759 (1941)

    Article  Google Scholar 

  40. B.H. Sage, D.C. Webster, Ind. Eng. Chem. 29, 1309 (1937)

    Article  Google Scholar 

  41. H. Senftleben, Z. Angew, Phys. 17, 86 (1964)

    Google Scholar 

  42. R. Niepmann, J. Chem. Thermodyn. 16, 851 (1984)

    Article  Google Scholar 

  43. M.B. Ewing, A.R.H. Goodwin, M.L. McGlashan, J.P.M. Trusler, J. Chem. Thermodyn. 20, 243 (1988)

    Article  Google Scholar 

  44. A. Abbaci, M. H. Samar, High Temp. High Press., 35/36 (2), 691 (2007)

  45. S. B. Kiselev, J.C. Rainwater, M. L. Huber, Fluid Phase Equilibria 150/151, 469 (1998)

  46. M.R. Moldover, Phys. Rev. A 31, 1022 (1985)

    Article  ADS  Google Scholar 

  47. R.A. Perkins, J.V. Sengers, I.M. Abdulagatov, M.L. Huber, Int. J. Thermophys. 34, 191 (2013). https://doi.org/10.1007/s10765-013-1409-z

    Article  ADS  Google Scholar 

  48. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Reference Fluid Thermodynamics and Transport Properties Database (REFPROP)—Version 9.0 (Office of Standards Reference Data, National Institute of Standards and Technology, Gaithersburg, MD, 2010)

Download references

Acknowledgements

The authors wish to thank Eric Lemmon for sending the data for n-butane experimental data and REFPROP version 10 Cv abd PVT calculations. Funding for this work was provided by the Direction Générale de la Recherche Scientifique et Technologique (DGRST) of the Algerian government PNR/CRSTA/2011.

Author information

Authors and Affiliations

Authors

Contributions

R. A. has done the research work under the supervision of A. A. A. A. has written (in english) and checked the main manuscript text/References and prepared Figures and Tables.

Corresponding author

Correspondence to Azzedine Abbaci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizi, A., Abbaci, A. An Equation of State for the Thermodynamic Properties of Fluid n-Butane in the Critical Region. Int J Thermophys 45, 68 (2024). https://doi.org/10.1007/s10765-024-03354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03354-y

Keywords

Navigation