Skip to main content

Advertisement

Log in

A Helmholtz Energy Equation of State for trans-1,1,1,4,4,4-Hexafluoro-2-butene [R-1336mzz(E)] and an Auxiliary Extended Corresponding States Model for the Transport Properties

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work presents a fundamental equation of state for the thermodynamic properties of R-1336mzz(E). The equation of state is expressed explicitly in the Helmholtz energy with temperature and density as the independent variables, and is based on consistent experimental datasets, including the critical parameters, vapor pressure, saturated liquid and vapor densities, \((p, \rho , T)\) behavior, vapor phase sound speed, and ideal-gas isobaric heat capacity. The equation of state is valid for temperatures from 200.15 K to 410 K and pressures up to 5.7 MPa. In this range, expected relative uncertainties at the 95 % confidence interval (\(k=2\)) are 0.1 % for vapor pressures, 1 % for saturated liquid densities, 1 % for saturated vapor densities, 0.15 % for liquid densities, 0.5 % for vapor densities, and 0.05 % for vapor phase sound speeds, except in the critical region where larger uncertainties of up to 2 % are sometimes observed in densities. The equation exhibits reasonable behavior in the critical and extrapolated regions; this is demonstrated by several plots of derived properties over wide ranges of temperature and pressure. Through the use of the new equation of state, this work also formulates an extended corresponding states (ECS) model for the viscosity and thermal conductivity of R-1336mzz(E) to represent recent experimental data for these properties mostly within their uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. ANSI/ASHRAE Standard 34-2019; Designation and Safety Classification of Refrigerants (2019)

  2. K. Kontmaris, L.D. Simoni, in Proceedings of JRAIA International Symposium (Kobe, Japan, 2016), pp. 283–288

  3. J.R. Juhasz, in Proceedings of the 12th IEA Heat Pump Conference (Rotterdam, the Netherlands, 2017)

  4. D.L. Murphy, M.S. Katancik, in Proceedings of 25th International Compressor Engineering Conference at Purdue (PaperID 2681) (West Lafayette, IN, USA, 2021)

  5. K. Gao, N. Purohit, E.V. Becerra, R. Vogl, A. Sethi, R. Hulse, in Proceedings of 19th International Refrigeration and Air Conditioning Conference at Purdue, (PaperID 2578) (West Lafayette, IN, USA, 2022)

  6. N. Sakoda, Y. Higashi, R. Akasaka, J. Chem. Eng. Data 66(1), 734 (2021). https://doi.org/10.1021/acs.jced.0c00848

    Article  Google Scholar 

  7. M.A. Kedzierski, L. Lin, Pool Boiling of R514A, R1224yd(Z), and R1336mzz(E) on a Reentrant Cavity Surface; Extensive Measurement and Analysis. Tech. Rep. NIST Technical Note 2125, National Institute of Standards and Technology, Gaithersburg, MD, USA (2020). https://doi.org/10.6028/NIST.TN.2125

  8. D. Mondal, K. Kariya, A.R. Tuhin, K. Miyoshi, A. Miyara, Int. J. Refrig. 129, 109 (2021). https://doi.org/10.1016/j.ijrefrig.2021.05.005

    Article  Google Scholar 

  9. D. Mondal, K. Kariya, A.R. Tuhin, N. Amakusa, A. Miyara, Int. J. Refrig. 133, 267 (2022). https://doi.org/10.1016/j.ijrefrig.2021.10.006

    Article  Google Scholar 

  10. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox. Gaussian 09 Revision D.01 (2009). Gaussian Inc. Wallingford CT 2009

  11. Y. Kayukawa, C. Kondou, N. Sakoda, K. Kariya, S. Fukuda, JSRAE Thermodynamic Tables JARef Vol. 5: HFOs & HCFOs (Japan Society of Refrigerating and Air Conditioning Engineers, 2021)

  12. S. Tomassetti, G. Di Nicola, C. Kondou, Int. J. Refrig. 133, 172 (2022). https://doi.org/10.1016/j.ijrefrig.2021.10.008

    Article  Google Scholar 

  13. E. Tiesinga, P.J. Mohr, D.B. Newell, B.N. Taylor, J. Phys. Chem. Ref. Data 50(3), 033105 (2021). https://doi.org/10.1063/5.0064853

    Article  ADS  Google Scholar 

  14. Y. Kano, Y. Kayukawa, Y. Fujita, in Proceedings of the 2nd Pacific Rim Thermal Engineering Conference (Hawaii, USA, 2019)

  15. E.W. Lemmon, R.T. Jacobsen, J. Phys. Chem. Ref. Data 34(1), 69 (2005). https://doi.org/10.1063/1.1797813

    Article  ADS  Google Scholar 

  16. K. Gao, J. Wu, P. Zhang, E.W. Lemmon, J. Chem. Eng. Data 61(8), 2859 (2016). https://doi.org/10.1021/acs.jced.6b00195

    Article  Google Scholar 

  17. E.W. Lemmon, M.O. McLinden, W. Wagner, J. Chem. Eng. Data 54(12), 3141 (2009). https://doi.org/10.1021/je900217v

    Article  Google Scholar 

  18. R. Akasaka, Y. Zhou, E.W. Lemmon, J. Phys. Chem. Ref. Data 44(1), 013104 (2015). https://doi.org/10.1063/1.4913493

    Article  ADS  Google Scholar 

  19. M. Thol, E.W. Lemmon, Int. J. Thermophys. 37, 28 (2016). https://doi.org/10.1007/s10765-016-2040-6

    Article  ADS  Google Scholar 

  20. S. Herrig, M. Thol, A.H. Harvey, E.W. Lemmon, J. Phys. Chem. Ref. Data 47(4), 043102 (2018). https://doi.org/10.1063/1.5053993

    Article  ADS  Google Scholar 

  21. R. Akasaka, E.W. Lemmon, J. Chem. Eng. Data 64(11), 4679 (2019). https://doi.org/10.1021/acs.jced.9b00007

    Article  Google Scholar 

  22. R. Akasaka, E.W. Lemmon, J. Phys. Chem. Ref. Data 51(2), 023101 (2022). https://doi.org/10.1063/5.0083026

    Article  ADS  Google Scholar 

  23. E.W. Lemmon, R. Akasaka, Int. J. Thermophys. 43(8), 119 (2022). https://doi.org/10.1007/s10765-022-03015-y

    Article  ADS  Google Scholar 

  24. R. Romeo, E.W. Lemmon, Int. J. Thermophys. 43(10), 146 (2022). https://doi.org/10.1007/s10765-022-03059-0

    Article  ADS  Google Scholar 

  25. G. Venkatarathnam, L.R. Oellrich, Fluid Phase Equilib. 301(2), 225 (2011). https://doi.org/10.1016/j.fluid.2010.12.001

    Article  Google Scholar 

  26. K. Tanaka, J. Ishikawa, K.K. Kontomaris, Int. J. Refrig. 82, 283 (2017). https://doi.org/10.1016/j.ijrefrig.2017.06.012

    Article  Google Scholar 

  27. T. Kimura, Thermodynamic Properties of HFO Refrigerants as Working Fluid for High Temperature Heat Pump. Ph.D. thesis, Waseda University, Japan (2019)

  28. E. Boonaert, A. Valtz, J. Brocus, C. Coquelet, Y. Beucher, F. De Carlan, J.M. Fourmigué, Int. J. Refrig. 114, 210 (2020). https://doi.org/10.1016/j.ijrefrig.2020.02.016

    Article  Google Scholar 

  29. K. Tanaka, J. Ishikawa, K.K. Kontomaris, J. Chem. Eng. Data 62(8), 2450 (2017). https://doi.org/10.1021/acs.jced.7b00381

    Article  Google Scholar 

  30. N. Kagawa, A. Matsuguchi, J. Chem. Eng. Data 67(10), 2948 (2022). https://doi.org/10.1021/acs.jced.2c00331

    Article  Google Scholar 

  31. X. Peng, H. Liu, L. Xu, Z. Yang, Y. Duan, J. Chem. Thermodyn. 171, 106808 (2022). https://doi.org/10.1016/j.jct.2022.106808

    Article  Google Scholar 

  32. Y. Kano, submitted to J. Chem. Eng. Data (2023)

  33. M. Thol, G. Rutkai, A. Köster, R. Lustig, R. Span, J. Vrabec, J. Phys. Chem. Ref. Data 45(2), 023101 (2016). https://doi.org/10.1063/1.4945000

    Article  ADS  Google Scholar 

  34. S. Iwasaki, C. Kondou, Y. Higashi, Trans. JSRAE 37(1), 73 (2020)

    Google Scholar 

  35. X. Yang, X. Xiao, M. Thol, M. Richter, I.H. Bell, Int. J. Thermophys. 43(12), 183 (2022). https://doi.org/10.1007/s10765-022-03096-9

    Article  ADS  Google Scholar 

  36. M.L. Huber, Models for Viscosity, Thermal Conductivity, and Surface Tension of Selected Pure Fluids as Implemented in REFPROP v10.0. Tech. Rep. NIST Interagency/Internal Report (NISTIR) 8209, National Institute of Standards and Technology, Gaithersburg, MD, USA (2018). https://doi.org/10.6028/NIST.IR.8209

  37. T.H. Chung, M. Ajlan, L.L. Lee, K.E. Starling, Ind. Eng. Chem. Res. 27(4), 671 (1988). https://doi.org/10.1021/ie00076a024

    Article  Google Scholar 

  38. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology (2018). https://doi.org/10.18434/T4/1502528https://www.nist.gov/srd/refprop

  39. R. Span, R. Beckmüller, S. Hielscher, A. Jäger, E. Mickoleit, T. Neumann, S. Pohl, B. Semrau, M. Thol. TREND. Thermodynamic Reference and Engineering Data 5.0. Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum. (2020)

  40. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Ind. Eng. Chem. Res. 53(6), 2498 (2014). https://doi.org/10.1021/ie4033999

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate Mark O. McLinden, Allan H. Harvey, Ian H. Bell, and Kehui Gao, National Institute of Standards and Technology, Boulder, for their assistance during the documentation of this paper. The authors are grateful to Ian H. Bell for his generous support in programming the supplementary computer codes.

Funding

Partially funded by the National Institute of Standards and Technology.

Author information

Authors and Affiliations

Authors

Contributions

RA contributed to evaluating available experimental data, fitting the consistent data to the final equation, and writing, reviewing, and editing the whole manuscript. MLH contributed to formulating the ECS model for the transport properties based on the final equation of state. LDS contributed to fitting an initial functional form of the equation of state. EWL contributed to establishing the fitting techniques for reliable equations of state and coding a computer program to implement it.

Corresponding author

Correspondence to Ryo Akasaka.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akasaka, R., Huber, M.L., Simoni, L.D. et al. A Helmholtz Energy Equation of State for trans-1,1,1,4,4,4-Hexafluoro-2-butene [R-1336mzz(E)] and an Auxiliary Extended Corresponding States Model for the Transport Properties. Int J Thermophys 44, 50 (2023). https://doi.org/10.1007/s10765-022-03143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03143-5

Keywords

Navigation