Skip to main content
Log in

Small Integrating Sphere Light Source with High Radiance Uniformity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An integrating sphere that yields uniform and intense radiance is needed for the spectral radiance responsivity calibration of absolute radiation thermometers. However, such an integrating sphere is difficult to realize owing to the common trade-off between spatial uniformity and throughput. Typically, the smaller sphere yields the higher throughput but worse uniformity. This paper reports a considerably uniform integrating sphere despite its small size. First, we introduce a simple approach, based on the perfect Lambertian diffuse reflection theory and the measured bidirectional reflectance distribution function of polytetrafluoroethylene (PTFE), for estimating the spatial uniformity of a 50 mm-diameter, pressed PTFE integrating sphere as a function of the incidence angle of an external light source. Based on the estimated results, we made an integrating sphere with \(45^\circ\)-incidence angle. This sphere showed the spatial uniformity of ± 0.01 % within 5 mm in diameter and the angular uniformity of ± 0.005 % over an angular range of ± \(1.58^\circ\). To the best of our knowledge, the \(45^\circ\)-incident integrating sphere with a diameter of 50 mm introduced in this study is the best design for obtaining a uniform and intense light source suitable for measuring the spectral radiance responsivity of an absolute radiation thermometer among the integrating spheres reported thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets in this study are available from the corresponding author upon request.

References

  1. Y. Yamaguchi, Y. Yamada, J. Ishii, XX IMEKO World Congress Metrology for Green Growth September 9–14 (Busan, Republic of Korea, 2013)

  2. Y. Yamaguchi, Y. Yamada, J. Ishii, Int. J. Thermophys. 36, 1825–1833 (2015). https://doi.org/10.1007/s10765-015-1918-z

    Article  ADS  Google Scholar 

  3. H.W. Yoon, C.E. Gibson, G.P. Eppeldauer, A.W. Smith, S.W. Brown, K.R. Lykke, Int. J. Thermophys. 32, 2217–2229 (2011). https://doi.org/10.1007/s10765-011-1056-1

    Article  ADS  Google Scholar 

  4. S.W. Brown, G.P. Eppeldauer, K.R. Lykke, Metrologia 37, 579–582 (2000). https://doi.org/10.1088/0026-1394/37/5/53

    Article  ADS  Google Scholar 

  5. S.W. Brown, G.P. Eppeldauer, K.R. Lykke, Appl. Opt. 45, 8218–8237 (2006). https://doi.org/10.1364/ao.45.008218

    Article  ADS  Google Scholar 

  6. K. Anhalt, G. Machin, Philos. Trans. A Math. Phys. Eng. Sci. 374, 20150041 (2016). https://doi.org/10.1098/rsta.2015.0041

    Article  ADS  Google Scholar 

  7. H.W. Yoon, V.B. Khromchenko, G.P. Eppeldauer, C.E. Gibson, J.T. Woodward, P.S. Shaw, K.R. Lykke, Philos. Trans. A Math. Phys. Eng. Sci. 374, 20150045 (2016). https://doi.org/10.1098/rsta.2015.0045

    Article  ADS  Google Scholar 

  8. M.R. Dury, T.M. Goodman, D.H. Lowe, G. Machin, E.R. Woolliams, AIP Conf. Proc. 1552, 65 (2013)

    Article  ADS  Google Scholar 

  9. J. Fischer, G. Neuer, E. Schreiber, R. Thomas, Metrological characterisation of a new transfer standard radiation thermometer, in Proceedings of the TEMPMEKO 2001 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, Berlin, Germany, 19–21 June 2001, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE Verlag, Berlin, Germany, 2002), pp. 801–806

  10. M. Noorma, P. Toivanen, F. Manoocheri, E. Ikonen, Metrologia 40, S220–S223 (2003). https://doi.org/10.1088/0026-1394/40/1/351

    Article  ADS  Google Scholar 

  11. Y. Zong, S.W. Brown, G.P. Eppeldauer, K.R. Lykke, Y. Ohno, Metrologia 49, S124–S129 (2012). https://doi.org/10.1088/0026-1394/49/2/S124

    Article  ADS  Google Scholar 

  12. K. Anhalt, A. Zelenjuk, D.R. Taubert, T. Keawprasert, J. Hartmann, Int. J. Thermophys. 30, 192–202 (2009). https://doi.org/10.1007/s10765-008-0480-3

    Article  ADS  Google Scholar 

  13. T. Keawprasert, K. Anhalt, D. Taubert, J. Hartmann, Int. J. Thermophys. 32, 2196 (2011)

    Article  Google Scholar 

  14. J.T. Woodward, A.W. Smith, C.A. Jenkins, C. Lin, S.W. Brown, K.R. Lykke, Metrologia 46, S277–S282 (2009). https://doi.org/10.1088/0026-1394/46/4/S27

    Article  ADS  Google Scholar 

  15. G.P. Eppeldauer, H.W. Yoon, J. Neira, V.B. Khromchenko, C.E. Gibson, A.W. Smith, AIP Conf. Proc. 1552, 60 (2013)

    Article  ADS  Google Scholar 

  16. Y.S. Yoo, D.-H. Lee, C.W. Park, S.N. Park, AIP Conf. Proc. 1552, 693 (2013)

    Article  ADS  Google Scholar 

  17. L. Bünger, R.D. Taubert, K. Anhalt, in the NIR Proceedings of IRS2 895-898, https://doi.org/10.5162/irs. (2015)

  18. Y.S. Yoo, G.J. Kim, S. Park, D.-H. Lee, B.-H. Kim, Metrologia 53, 1354–1364 (2016). https://doi.org/10.1088/0026-1394/53/6/1354

    Article  ADS  Google Scholar 

  19. P.Y. Barnes, E.A. Early, Proc. SPIE II, 190–194 (1998). https://doi.org/10.1117/12.328454

    Article  Google Scholar 

  20. P.Y. Barnes, E.A. Early, A.C. Parr, in the National Institute of Standards and Technology Special Publication 250–48, (1998), http://www.nist.gov/calibrations/sp250_series.cfm

  21. D.-J. Shin, D.-H. Lee, G.-R. Jeong, Y.-J. Cho, S.-N. Park, I.-W. Lee, Davos, Switzerland, in Proceedings of the 9th International Conference on New Developments and Applications in Optical Radiometry, (2005), pp. 77–78

  22. Integrating Sphere Theory and Applications (Technical guide, Labsphere)

  23. J. Hwang, Appl. Opt. 53, 6216–6221 (2014). https://doi.org/10.1364/AO.53.006216

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research on Measurement Standards for Redefinition of SI Units funded by the Korea Research Institute of Standards and Science under Grant KRISS-2023-GP2023-0001.

Funding

This work was supported by the Enhancement of Measurement Standards and Technologies in Physics funded by the Korea Research Institute of Standards and Science under Grant KRISS-2023-GP2023-0001.

Author information

Authors and Affiliations

Authors

Contributions

YSY conducted the integrating sphere design, characterizations, and measurement. KLJ manufactured the integrating sphere. SP contributed in the numerical simulation. JH measured the BRDF of the PTFE. DJS conducted the integrating sphere design and contributed in the numerical simulation. All authors reviewed the manuscript.

Corresponding author

Correspondence to D. J. Shin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of the Total Radiance Ratio of \({\varvec{L}}\left(\mathbf{x}\right)\) to \({\varvec{L}}\left({\mathbf{x}}_{0}\right)\)

Appendix: Derivation of the Total Radiance Ratio of \({\varvec{L}}\left(\mathbf{x}\right)\) to \({\varvec{L}}\left({\mathbf{x}}_{0}\right)\)

Starting from Eq. 6 of the perfect Lambertian

$$L={L}_{1}+{L}_{\mathrm{R}}=\left(1-\rho \right)L+\rho L.$$
(12)

By approximated generalization of Eq. 6 [See Sec. 2.2], the total radiance at surface elements \({\mathrm{x}}_{0}\) and \(\mathrm{x}\) on the target arc can be written as

$$L\left({\mathrm{x}}_{0}\right)={L}_{1}\left({\mathrm{x}}_{0}\right)+{L}_{\mathrm{R}}\left({\mathrm{x}}_{0}\right),$$
(13)
$$L\left(\mathrm{x}\right)={L}_{1}\left(\mathrm{x}\right)+{L}_{\mathrm{R}}\left(\mathrm{x}\right).$$
(14)

Under an approximation of \({L}_{\mathrm{R}}\left({\mathrm{x}}_{0}\right)={L}_{\mathrm{R}}\left(\mathrm{x}\right)\equiv {L}_{\mathrm{R}}\), Eq. 13 and 14 can be written as

$$L\left({\mathrm{x}}_{0}\right)={L}_{\mathrm{R}}\left[1+\frac{{L}_{1}\left({\mathrm{x}}_{0}\right)}{{L}_{\mathrm{R}}}\right],$$
(15)
$$L\left(\mathrm{x}\right)={L}_{\mathrm{R}}\left[1+\frac{{L}_{1}\left(\mathrm{x}\right)}{{L}_{\mathrm{R}}}\right].$$
(16)

Dividing Eq. 16 by Eq. 15, the ratio of the total reflected radiance between the two surface elements is

$$\frac{L\left(\mathrm{x}\right)}{L\left({\mathrm{x}}_{0}\right)}=\left[1+\frac{{L}_{1}\left(\mathrm{x}\right)}{{L}_{\mathrm{R}}}\right]\cdot {\left[1+\frac{{L}_{1}\left({\mathrm{x}}_{0}\right)}{{L}_{\mathrm{R}}}\right]}^{-1}.$$
(17)

Since \(\frac{{L}_{1}\left({\mathrm{x}}_{0}\right)}{{L}_{\mathrm{R}}}\mathrm{and} \frac{{L}_{1}\left(\mathrm{x}\right)}{{L}_{\mathrm{R}}}\ll 1\), Eq. 17 can be approximated as

$$\frac{L\left(\mathrm{x}\right)}{L\left({\mathrm{x}}_{0}\right)}\cong 1+\frac{{L}_{1}\left(\mathrm{x}\right)}{{L}_{\mathrm{R}}}-\frac{{L}_{1}\left({\mathrm{x}}_{0}\right)}{{L}_{\mathrm{R}}}-\frac{{L}_{1}\left(\mathrm{x}\right)}{{L}_{\mathrm{R}}}\cdot \frac{{L}_{1}\left({\mathrm{x}}_{0}\right)}{{L}_{\mathrm{R}}}+\dots .$$
(18)

Taking only three terms of the first-order approximation, Eq. 18 can be rewritten as

$$\frac{L\left(\mathrm{x}\right)}{L\left({\mathrm{x}}_{0}\right)}\cong 1+\frac{\left[{L}_{1}\left(\mathrm{x}\right)-{L}_{1}\left({\mathrm{x}}_{0}\right)\right]}{{L}_{\mathrm{R}}}.$$
(19)

To simplify Eq. 19 as a function of \({L}_{1}\left(\mathrm{x}\right)/{L}_{1}\left({\mathrm{x}}_{0}\right)\), we approximate \(\frac{{L}_{1}\left({\mathrm{x}}_{0}\right)}{{L}_{\mathrm{R}}}\) to \(\frac{1-\rho }{\rho }\) using Eq. 12 of \(\frac{{L}_{1}}{{L}_{\mathrm{R}}}=\frac{1-\rho }{\rho }\) for the perfect Lambertian. Applying this approximation to Eq. 19,

$$\frac{L\left(\mathrm{x}\right)}{L\left({\mathrm{x}}_{0}\right)}\cong 1+\frac{\left[{L}_{1}\left(\mathrm{x}\right)-{L}_{1}\left({\mathrm{x}}_{0}\right)\right]}{{L}_{1}\left({\mathrm{x}}_{0}\right)}\cdot \frac{\left(1-\rho \right)}{\rho }.$$
(20)

Re-arranging Eq. 20,

$$\frac{L\left(\mathrm{x}\right)}{L\left({\mathrm{x}}_{0}\right)}\cong 1+\left[\frac{{L}_{1}\left(\mathrm{x}\right)}{{L}_{1}\left({\mathrm{x}}_{0}\right)}-1\right]\cdot \frac{\left(1-\rho \right)}{\rho }.$$
(21)
$$\frac{L\left(\mathrm{x}\right)}{L\left({\mathrm{x}}_{0}\right)}\cong 1+\frac{\left(1-\rho \right)}{\rho }\bullet \frac{{L}_{1}\left(\mathrm{x}\right)}{{L}_{1}\left({\mathrm{x}}_{0}\right)}-\frac{\left(1-\rho \right)}{\rho }.$$
(22)

Approximating \(\rho\) to 1 in the denominator of Eq. 22, we finally obtain the total radiance ratio of \(L\left(\mathrm{x}\right)\) to \(L\left({x}_{0}\right)\) as follows:

$$\frac{L\left(\mathrm{x}\right)}{L\left({\mathrm{x}}_{0}\right)}\cong \left(1-\rho \right)\frac{{L}_{1}\left(\mathrm{x}\right)}{{L}_{1}\left({\mathrm{x}}_{0}\right)}+\rho .$$
(23)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, Y.S., Jeong, K.L., Park, S. et al. Small Integrating Sphere Light Source with High Radiance Uniformity. Int J Thermophys 44, 120 (2023). https://doi.org/10.1007/s10765-023-03227-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03227-w

Keywords

Navigation