Skip to main content
Log in

Thermodynamic Properties and Critical Behavior of Spin-Polarized Atomic Hydrogen (H↓) Using the Quantum Second-Virial Coefficient

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The quantum–mechanical formulations for the second-virial, and the acoustic virial, coefficients are derived for spin-polarized atomic hydrogen (H↓). The dependence of these coefficients on the temperature T as well as the nuclear polarization \(\zeta \;\) is analyzed. This is done for the first time. The main inputs in these computations are the scattering phase shifts, which are obtained using the Lippmann–Schwinger equation, with the Silvera triplet-state potential. Starting with these phase shifts, comprehensive calculations of the thermophysical properties for this system are performed for T ranging from 1 µK to 100 K, and \(\zeta \;\) varying from 0 to 1. These properties include, in addition to the quantum second-virial coefficient and the acoustic virial coefficient: the pressure–polarization–temperature \(\left( {P {-} \zeta {-} T} \right)\) behavior, the entropy (per atom), the speed of sound, the second-virial correction (to the total internal energy per atom and unit density), and the specific heat capacity (per atom and unit density). The Boyle temperature and the Joule inversion temperature are determined. The T-dependence of these thermophysical properties, and related quantities, is explored. As expected, this dependence is most evident in the low-T limit, where quantum effects predominate. The corresponding \(\zeta\)-dependence becomes noticeable at 80 K and below. It is observed that the virial coefficients tend to decrease with increasing \(\zeta\). Comparison of the present results to previous results are included whenever possible. The overall agreement is very good. As T is lowered, the disruptive effects of thermal energy are weakened relative to the attractive interactions between the atoms. Consequently, the H↓ gas makes a transition to a state of higher order and lower entropy—Bose–Einstein condensation (BEC). This is explored carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. K. Huang, Statistical Mechanics, 2nd edn. (Wiley, New York, 1987)

    MATH  Google Scholar 

  2. M. Haugen, E. Østgaard, Can. J. Phys. 67, 63 (1989)

    Article  ADS  Google Scholar 

  3. M.J. Jamieson, A. Dalgarno, B. Zygelman, P.S. Krstic, D.R. Schulz, Phys. Rev. A 61, 014701 (1999)

    Article  ADS  Google Scholar 

  4. I.F. Silvera, J.M. Walraven, Prog. Low Temp. Phys. 10, 139 (1986)

    Article  Google Scholar 

  5. R.F. Bishop, H.B. Ghassib, M.R. Strayer, J. Low Temp. Phys. 24(5/6), 669–690 (1977)

    Article  ADS  Google Scholar 

  6. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  7. H.B. Ghassib, R.F. Bishop, M.R. Strayer, J. Low Temp. Phys. 23, 393–401 (1976)

    Article  ADS  Google Scholar 

  8. R.F. Bishop, H.B. Ghassib, M.R. Strayer, Phys. Rev. A 13(4), 1570–1580 (1976)

    Article  ADS  Google Scholar 

  9. E. Beth, G.E. Uhlenbeck, Physica 3(4), 729 (1936)

    ADS  Google Scholar 

  10. V. Lefevre-Seguin, H. Guignes, C. Lhuillier, Phys. Rev. B 36(1), 141–155 (1987)

    Article  ADS  Google Scholar 

  11. B.R. Joudeh, Phys. B 421, 41 (2013)

    Article  ADS  Google Scholar 

  12. B.R. Joudeh, A.S. Sandouqa, J. Low Temp. Phys. 190, 101 (2018)

    Article  ADS  Google Scholar 

  13. B.R. Joudeh, M.K. Al-Sugheir, H.B. Ghassib, Phys. B 288, 237 (2007)

    Article  ADS  Google Scholar 

  14. A.S. Sandouqa, Chem. Phys. Lett. 703, 29 (2018)

    Article  ADS  Google Scholar 

  15. D.G. Fried, T.C. Killian, L. Willmann, D. Landhuis, S.C. Moss, D. Kleppner, T.J. Greytak, Phys. Rev. Lett. 81, 3811 (1998)

    Article  ADS  Google Scholar 

  16. T.J. Greytak, D. Kleppner, D.G. Fried, T.C. Killian, L. Willmann, D. Landhuis, S.C. Moss, Phys. B 280, 20 (2000)

    Article  ADS  Google Scholar 

  17. M.J. Yoo, T.J. Greytak, Phys. Rev. B. 52, 7215 (1995)

    Article  ADS  Google Scholar 

  18. R. de Carvalho, N. Brahms, B. Newman, J.M. Doyle, D. Kleppner, T. Greytak, Can. J. Phys. 83, 293 (2005)

    Article  ADS  Google Scholar 

  19. M.J. Jamieson, A. Dalgarno, M. Kimura, Phys. Rev. A 51, 2626 (1995)

    Article  ADS  Google Scholar 

  20. A.J. Berlinsky, J. Appl. Phys. 52, 2309 (1981)

    Article  ADS  Google Scholar 

  21. B.R. Johnson, J.S. Denker, N. Bigelow, L.P. Levy, J.H. Freed, D.M. Lee, Phys. Rev. Lett. 52(17), 1508 (1984)

    Article  ADS  Google Scholar 

  22. W.C. Stwalley, L.H. Nosanow, Phys. Rev. Lett. 36, 910 (1976)

    Article  ADS  Google Scholar 

  23. L.P. Levy, A.E. Ruckenstein, Phys. Rev. Lett. 52, 1512 (1984)

    Article  ADS  Google Scholar 

  24. A. Sen, S. Chakraborty, S. Ghosh, Europhys. Lett. 76(4), 582–587 (2006)

    Article  ADS  Google Scholar 

  25. J.J. Hurly, J.B. Mehl, J. Res. Natl. Inst. Stand. Technol. 112, 75 (2007)

    Article  Google Scholar 

  26. E.D. Costa, N.H.D. Lemes, M.O. Alves, R.C.O. Sebastiao, J.B. Braga, J. Braz. Chem. Soc 24(3), 363–368 (2013)

    Article  Google Scholar 

  27. G. Vermenlen, M. Elbel, F. Laloe, Z. Phys. D Atoms Mol. Clusters 15, 13–15 (1990)

    Article  ADS  Google Scholar 

  28. E. Bich, R. Hellmann, E. Vogel, Mol. Phys. 105, 3035 (2007)

    Article  ADS  Google Scholar 

  29. P. Czachorowski, M. Przybytek, M. Lesiuk, M. Puchalski, B. Jeziorski, Phys. Rev. A 102, 042810 (2020)

    Article  ADS  Google Scholar 

  30. T.K. Lim, S.Y. Larsen, J. Chem. Phys. 74, 4997 (1981)

    Article  ADS  Google Scholar 

  31. F.R.W. McCourt, Virial coefficients, in Handbook of Molecular Physics and Quantum Chemistry, Molecules in the Physicochemical, Environment: Spectroscopy, Dynamics and Bulk Properties. ed. by P.F. Bernath, S. Wilson (Wiley, Hoboken, 2003), pp.673–711

    Google Scholar 

  32. R.L. Siddon, M. Schick, Phys. Rev. A 9, 907 (1972)

    Article  ADS  Google Scholar 

  33. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)

    MATH  Google Scholar 

  34. A.S. Sandouqa, B.R. Joudeh, O.T. Al-Obeidat, M.M. Hawamdeh, H.B. Ghassib, Eur. Phys. J. Plus 135, 161 (2020)

    Article  Google Scholar 

  35. M.M. Hawamdeh, A.S. Sandouqa, B.R. Joudeh, O.T. Al-Obeidat, H.B. Ghassib, Eur. Phys. J Plus. 137, 1025 (2022)

    Article  Google Scholar 

  36. A.F. Al-Maaitah, A.S. Sandouqa, B.R. Joudeh, O.T. Al-Obeidat, Chin. J. Phys. 62, 194 (2019)

    Article  Google Scholar 

  37. W. Van Dael, Experimental thermodynamics, in Experimental Thermodynamics of Non-Reacting Fluids, vol. 2, ed. by B. Le Neindre, B. Vodar (Butterworths, London, 1975), pp.527–577

    Google Scholar 

  38. B. Song, P. Xu, M. He, Mol. Phys. 119, e1802525 (2021). https://doi.org/10.1080/00268976.2020.1802525

    Article  ADS  Google Scholar 

  39. R.P. Feynman, Statistical Mechanics: A Set of Lectures (Benjamin, Reading, 1992)

    MATH  Google Scholar 

  40. S.J. Blundell, K.M. Blundell, Concepts in Thermal Physics, P369 (Oxford University Press, Oxford, 2009)

    Book  MATH  Google Scholar 

  41. E. Somuncu, F. Oner, M. Orbay, B.A. Mamedov, J. Math. Chem. (2019). https://doi.org/10.1007/s10910-019-01049-6

    Article  Google Scholar 

  42. B.A. Mamedov, E. Somuncu, Chin. J. Phys. 55, 1473 (2017)

    Article  Google Scholar 

  43. E.V.L. Mello, J.J. Rehr, O.E. Vilches, Phys. Rev. B 28(7), 3759 (1983)

    Article  ADS  Google Scholar 

  44. P. de Smedt, G. Stragier, J. Phys. A. 15, 2483 (1982)

    Article  ADS  Google Scholar 

  45. T.K. Lim, S.Y. Larsen, J. Chem. Phys. 75, 955 (1981)

    Article  ADS  Google Scholar 

  46. H.B. Ghassib, A.R. Sakhel, O. Obeidat, A. Al-Oqali, R.R. Sakhel, Phys. Rev. E 85, 0167021 (2012)

    Article  Google Scholar 

  47. R.K. Pathria, P.D. Beale, Statistical Mechanics, 3rd edn. (Butterworth Heinemann, Oxford, 2011)

    MATH  Google Scholar 

  48. H.S.W. Massey, R.A. Buckingham, Proc. R. Soc. Lond. A 168(934), 378 (1938)

    Article  ADS  Google Scholar 

  49. A.S. Sandouqa, B.R. Joudeh, Phys. Scr. 93, 095401 (2018)

    Article  ADS  Google Scholar 

  50. A.R. Joudeh, A.S. Sandouqa, H.B. Ghassib, M.K. Al-Sugheir, J. Low Temp. Phys. 161, 348–366 (2010)

    Article  ADS  Google Scholar 

  51. P.-L. You, Phys. B 491, 84–92 (2016)

    Article  ADS  Google Scholar 

  52. H. Maris, S. Balibar, Phys. Today 1, 29–34 (2000)

    Article  Google Scholar 

  53. S. Burger, F.S. Cataliotti, C. Fort, F. Minardi, M. Inguscio, M.L. Chiofalo, M.P. Tosi, Phys. Rev. Lett. 86, 4447 (2001)

    Article  ADS  Google Scholar 

  54. A. Camacho, http://arxiv.org/1205.4774v1 (2012).

  55. M.R. Andrews, D.M. Kurn, H.-J. Miesner, D.S. Durfee, C.G. Townsend, S. Inouye, W. Ketterle, Phys. Rev. Lett. 79, 553–556 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BRJ confirms sole responsibility for the following: present the theoretical formalism and computations, numerical data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to B. R. Joudeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joudeh, B.R. Thermodynamic Properties and Critical Behavior of Spin-Polarized Atomic Hydrogen (H↓) Using the Quantum Second-Virial Coefficient. Int J Thermophys 44, 45 (2023). https://doi.org/10.1007/s10765-023-03155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03155-9

Keywords

Navigation