Skip to main content
Log in

Transport Properties of Spin-Polarized Atomic Hydrogen Using Generalized Scattering Theory

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Our results for the scattering and thermophysical properties of spin-polarized atomic hydrogen \((\hbox {H}{\downarrow })\) have been presented in the temperature range 0.01–10 K using the Galitskii–Migdal–Feynman formalism. These results include the quantum second virial coefficient, the average total and viscosity cross sections, the viscosity, the diffusion coefficient, and the thermal conductivity. The calculations have been undertaken using three triplet-state potentials: Morse-type, Silvera and Born–Oppenheimer potentials. The Morse potential is less attractive and very simple, but less accurate to describe spin-polarized atomic hydrogen. That explains the differences between it and the other two potentials, which are clearly better. From the results of the average total cross sections, it is concluded the \(\hbox {H}{\downarrow }\) remains a gas even at low temperature. The viscosity, the thermal conductivity, and the diffusion coefficients of \(\hbox {H}{\downarrow }\) increase in all cases with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H.B. Ghassib, R.F. Bishop, M.R. Strayer, J. Low Temp. Phys. 23, 393–401 (1976)

    Article  ADS  Google Scholar 

  2. B.R. Joudeh, A.S. Sandouqa, H.B. Ghassib, M.K. Al-Sugheir, J. Low Temp. Phys. 161, 348 (2010)

    Article  ADS  Google Scholar 

  3. M. Haugen, E. Østgaard, J. Canadian, Physics 67, 63 (1989)

    Google Scholar 

  4. M.J. Jamieson, A. Dalgarno, B. Zygelman, Phys. Rev. A 61, 0147011 (1999)

    Article  Google Scholar 

  5. T.K. Lim, J. Chem. Phys. 77, 6197 (1982)

    Article  ADS  Google Scholar 

  6. R.D. Etters, J.V. Dugan, R.W. Palmer, J. Chem. Phys. 62, 313 (1975)

    Article  ADS  Google Scholar 

  7. M.D. Miller, L.H. Nosanow, Phys. Rev. B 15, 4376 (1976)

    Article  ADS  Google Scholar 

  8. L.V. Markic, J. Boronat, J. Casulleras, Phys. Rev. B 75, 064506 (2007)

    Article  ADS  Google Scholar 

  9. D. Blume, B.D. Esry, C.H. Greene, N. Klausen, G.J. Hanna, Phys. Rev. Lett. 89, 1634021 (2002)

    Article  Google Scholar 

  10. I. Bešlić, Markić L. Vranješ, J. Boronat, J. Chem. Phys. 128, 064302 (2008)

    Article  ADS  Google Scholar 

  11. I. Bešlić, L. Vranješ Markić, J. Boronat, J. Chem. Phys. 131, 244506 (2009a)

    Article  ADS  Google Scholar 

  12. P. Stipanović, Markić L. Vranješ, J. Boronat, B. Kežić, J. Chem. Phys. 134, 054509 (2011)

    Article  ADS  Google Scholar 

  13. I. Bešlić, L. Vranješ Markić, J. Boronat, Phys. Rev. B 80, 13450 (2009b)

    Google Scholar 

  14. I. Bešlić, Markić L. Vranješ, J. Boronat, Low Temp. Phys. 39, 857 (2013)

    Article  ADS  Google Scholar 

  15. M.A. Solis, R. Guardiola, M. de Llano, M. Fortes, W.C. Stwalley, J. Phys.: Condens. Matter 5, 5783 (1993)

    ADS  Google Scholar 

  16. B.R. Joudeh, M.K. Al-Sugheir, H.B. Ghassib, Int. J. Mod. Phys. B 19, 3985 (2005)

    Article  ADS  Google Scholar 

  17. M.K. Al-Sugheir, A.S. Sandouqa, B.R. Joudeh, S. Al-Omari, M. Awawdeh, F. Rawwagah, Phys. B 405, 2171 (2010)

    Article  ADS  Google Scholar 

  18. B.R. Joudeh, M.K. Al-Sugheir, H.B. Ghassib, Phys. B 288, 237 (2007)

    Article  ADS  Google Scholar 

  19. B.R. Joudeh, Phys. B 421, 41 (2013)

    Article  ADS  Google Scholar 

  20. I.F. Silvera, J.M. Walraven, Phys. Rev. Lett. 44(3), 164–168 (1980)

    Article  ADS  Google Scholar 

  21. D.G. Fried, T.C. Killian, L. Willmann, D. Landhuis, S.C. Moss, D. Kleppner, T.J. Greytak, Phys. Rev. Lett. 81, 3811 (1998)

    Article  ADS  Google Scholar 

  22. T.J. Greytak, D. Kleppner, D.G. Fried, T.C. Killian, L. Willmann, D. Landhuis, S.C. Moss, Phys. B 280, 20 (2000)

    Article  ADS  Google Scholar 

  23. M.J. Yoo, T.J. Greytak, Phys. Rev. B 52, 7215 (1995)

    Article  ADS  Google Scholar 

  24. O. Vainio, J. Ahokas, J. Järvinen, L. Lehtonen, S. Novotny, S. Sheludiakov, K.-A. Suominen, S. Vasiliev, D. Zvezdov, V.V. Khmelenko, D.M. Lee, Phys. Rev. Lett. 114, 125304 (2015)

    Article  ADS  Google Scholar 

  25. W.C. Stwalley, L.H. Nosanow, Phys. Rev. Lett. 36, 910 (1976)

    Article  ADS  Google Scholar 

  26. A.J. Berlinsky, J. Appl. Phys. 52, 2309 (1981)

    Article  ADS  Google Scholar 

  27. I.F. Silvera, J.M. Walraven, Prog. Low Temp. Phys. 10, 139 (1986)

    Article  Google Scholar 

  28. W. Kolos, L. Wolniewicz, Chem. Phys. Lett. 24, 457 (1974)

    Article  ADS  Google Scholar 

  29. W. Kolos, Rychlewski, J. Mol. Spectrosc. 143, 237 (1990)

    Article  ADS  Google Scholar 

  30. J.V. Dugan, R.D. Etters, J. Chem. Phys. 59, 6171 (1973)

    Article  ADS  Google Scholar 

  31. M.J. Jamieson, A. Dalgarno, M. Kimura, Phys. Rev. A 51, 2626 (1995)

    Article  ADS  Google Scholar 

  32. M.J. Jamieson, A. Dalgarno, J.N. Yukich, Phys. Rev. A 46, 11 (1992)

    Article  Google Scholar 

  33. E. Beth, G.E. Uhlenbeck, Physica 3(4), 729 (1936)

    ADS  Google Scholar 

  34. E.V.L. Mello, J.J. Rehr, O.E. Vilches, Phys. Rev. B 28(7), 3759–3764 (1983)

    Article  ADS  Google Scholar 

  35. V.L. Seguin, H. Guignes, C. Lhuillier, Phys. Rev. B 36(1), 141–155 (1987)

    Article  ADS  Google Scholar 

  36. E.D. Costa, N.H.D. Lemes, M.O. Alves, R.C.O. Sebastiao, J.B. Braga, J. Braz. Chem. Soc. 24(3), 363–368 (2013)

    Article  Google Scholar 

  37. R.F. Bishop, H.B. Ghassib, M.R. Strayer, J. Low Temp. Phys. 24, 669 (1977)

    Article  ADS  Google Scholar 

  38. H.B. Ghassib, J.M. Irvine, R.H. Ibarra, Ann. Phys. 85(2), 378–409 (1974)

    Article  ADS  Google Scholar 

  39. M.K. Al-Sugheir, H.B. Ghassib, B.R. Joudeh, Int. J. Mod. Phys. B 18, 2491–2504 (2006)

    Article  ADS  Google Scholar 

  40. A.S. Sandouqa, H.B. Ghassib, B.R. Joudeh, Chem. Phys. Lett. 490, 172–175 (2010)

    Article  Google Scholar 

  41. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  42. R.F. Bishop, H.B. Ghassib, M.R. Strayer, Phys. Rev. A 13(4), 1570–1580 (1976)

    Article  ADS  Google Scholar 

  43. H.T. Stoof, M. Bijlsma, M. Houbiers, J. Res. Nat. Inst. Stand. Tech. 101(4), 443–455 (1996)

    Article  Google Scholar 

  44. B.R. Joudeh, A.S. Sandouqa, H.B. Ghassib, M.K. Al-Sugheir, J. Low Temp. Phys. 161, 348–366 (2010)

    Article  ADS  Google Scholar 

  45. C. Kittel, H. Kroemer, Thermal Physics (Freeman, New York, 1980)

    Google Scholar 

Download references

Acknowledgements

The authors thank Al Imam Muhammad Ibn Saud Islamic University (IMSIU) for supporting our project entitled ‘Thermophysical Properties of Spin-Polarized Atomic Hydrogen Isotopes Using Generalized Scattering Theory,’ under Grant No. 350802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Joudeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joudeh, B.R., Sandouqa, A.S. Transport Properties of Spin-Polarized Atomic Hydrogen Using Generalized Scattering Theory. J Low Temp Phys 190, 101–119 (2018). https://doi.org/10.1007/s10909-017-1824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1824-9

Keywords

Navigation