Skip to main content
Log in

A study of the Galitskii-Feynman T matrix for liquid 3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Galitskii-Feynman T matrix, which sums the infinite ladder series in a many-fermion system for both particle-particle and hole-hole scattering, is studied in detail for a family of realistic He-He interactions. The structure of the S-wave bound-state singularity, reported previously, and its dependence on the bare interaction are documented at length. Special attention is devoted to the T matrix in the scattering region, where the c.m. energy of the interacting pair is positive. In particular, the on-energy-shell T matrix in this region is parametrized in terms of real “effective” phase shifts incorporating many-body effects. The critical behavior discussed previously in the bound-state region manifests itself clearly in the zero-energy limit of these phase shifts for the S wave. Below (above) a certain critical density, which is a function of both temperature and c.m. momentum, this limit approaches the value 0(−π) radians. A generalized Levinson's theorem relates this behavior to the existence of fermion-fermion pairing. An especially striking feature of these many-body phase shifts is the cusp behavior exhibited at the Fermi surface in the lowtemperature limit, which turns out to arise essentially from the structure of the particle and hole occupation probabilities. Throughout this study the temperature dependence of the T matrix is particularly emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abrikosov and I. M. Khalatnikov, Rep. Prog. Phys. 22, 329 (1959).

    Google Scholar 

  2. P. Nozieres, Theory of Interacting Fermi Systems (Benjamin, New York, 1964); D. Pines and P. Nozieres, The Theory of Quantum Liquids (Benjamin, New York, 1966), Vol. I.

    Google Scholar 

  3. A. L. Stewart, Advan. Phys. 12, 299 (1963).

    Google Scholar 

  4. R. H. Sherman and F. D. Edeskuty, Ann. Phys. (N.Y.) 9, 522 (1960).

    Google Scholar 

  5. E. Feenberg, Theory of Quantum Fluids (Academic Press, New York, 1969).

    Google Scholar 

  6. F. Mohling, Phys. Rev. 122, 1043 (1961), and many other papers; E. R. Tuttle and F. Mohling, Ann. Phys. (N.Y.) 38, 510 (1966); A. Ford, F. Mohling, and J. C. Rainwater, Ann. Phys. (N.Y.) 84, 80 (1974).

    Google Scholar 

  7. T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959).

    Google Scholar 

  8. B. Kahn, On the Theory of the Equation of State (Dissertation, University of Utrecht), (North-Holland, Amsterdam, 1938). Reprinted in Studies in Statistical Mechanics, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1965), Vol. III, p. 277.

    Google Scholar 

  9. B. D. Day, Rev. Mod. Phys. 39, 719 (1967); H. A. Bethe, Ann. Rev. Nucl. Sci. 21, 93 (1971).

    Google Scholar 

  10. V. M. Galitskii and A. B. Migdal, Sov. Phys.—JETP 7, 96 (1958); V. M. Galitskii, Sov. Phys.—JETP 7, 104 (1958).

    Google Scholar 

  11. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  12. R. F. Bishop, M. R. Strayer, and J. M. Irvine, Phys. Rev. A 10, 2423 (1974); R. F. Bishop, M. R. Strayer, and J. M. Irvine, J. Low Temp. Phys. 20, 571 (1975).

    Google Scholar 

  13. M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, London, 1964); R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966).

    Google Scholar 

  14. Y. Yamaguchi, Prog. Theor. Phys. (Kyoto) —Supplement (1959).

  15. N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd ed. (Clarendon Press, Oxford, 1965).

    Google Scholar 

  16. M. I. Haftel and F. Tabakin, Nucl. Phys. A158, 1 (1970).

    Google Scholar 

  17. H. B, Ghassib, R. H. Ibarra, and J. M. Irvine, Ann. Phys. (N.Y.) 85, 378 (1974); H. B. Ghassib and J. M. Irvine, J. Low Temp. Phys. 18, 201 (1975).

    Google Scholar 

  18. I. R. Rao and Y. S. T. Rao, preprint, Tata Institute, Bombay, 1975.

  19. A. I. Ahonen, M. T. Haikala, M. Krusius, and O. V. Lounasmaa, Phys. Rev. Lett. 33, 628 (1974).

    Google Scholar 

  20. A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975); J. C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).

    Google Scholar 

  21. R. F. Bishop, Phys. Rev. C 7, 479 (1973).

    Google Scholar 

  22. R. F. Bishop, H. B. Ghassib, and M. R. Strayer, Phys. Rev. A (to be published).

  23. L. W. Bruch and I. J. McGee, J. Chem. Phys. 46, 2959 (1967); J. Chem. Phys. 52, 5884 (1970).

    Google Scholar 

  24. D. E. Beck, Mol. Phys. 14, 311 (1968); Mol. Phys. 15, 332 (1968); J. Chem. Phys. 50, 541 (1969).

    Google Scholar 

  25. G. Sposito, J. Low Temp. Phys. 3, 491 (1970); G. Sposito and E. Hukoveh, J. Low Temp. Phys. 9, 495 (1972).

    Google Scholar 

  26. A. A. Frost and B. Musulin, J. Chem. Phys. 22, 1017 (1954).

    Google Scholar 

  27. R. F. Bishop, H. B. Ghassib, and M. R. Strayer (to be published).

  28. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover Publications, New York, 1965), pp. 332, 334, 556.

    Google Scholar 

  29. A. C. Anderson, D. O. Edwards, W. R. Roach, R. E. Sarwinski, and J. C. Wheatley, Phys. Rev. Lett. 17, 367 (1966).

    Google Scholar 

  30. J. Wilks, The Properties of Liquid and Solid Helium (Clarendon Press, Oxford, 1967), p. 1.

    Google Scholar 

  31. W. M. Frank, D. J. Land, and R. M. Spector, Rev. Mod. Phys. 43, 36 (1971).

    Google Scholar 

  32. W. Kohn and D. Sherrington, Rev. Mod. Phys. 42, 1 (1970).

    Google Scholar 

  33. R. Kubo and T. Nagamiya, eds., Solid State Physics (McGraw-Hill, New York, 1969).

    Google Scholar 

  34. C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).

    Google Scholar 

  35. R. F. Sawyer and D. J. Scalapino, Phys. Rev. D 7, 953 (1973); D. F. Goble, Ann. Phys. (N. Y.) 90, 295 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghassib, H.B., Bishop, R.F. & Strayer, M.R. A study of the Galitskii-Feynman T matrix for liquid 3He. J Low Temp Phys 23, 393–410 (1976). https://doi.org/10.1007/BF00116928

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116928

Keywords

Navigation