Skip to main content
Log in

Effect of Intrinsic and Extrinsic Defects on the Structural, Thermal, and Electrical Properties in p-Type CZ-Si Wafers with Different Carrier Concentrations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Last century, there has been a growing interest in detecting defects in semiconductors, aiming to improve product quality to decrease production costs. Silicon manufacturing is carried out using different methods and procedures. It is crucial to consider quality control in all steps since dislocations, protrusive hillocks, and boron-oxygen complexes, among others, can be produced during the machining process, influencing the final product quality. Optical and electron microscopies are common tools to visualize defects in materials. However, these methods are time-consuming, inaccurate, and expensive. The objective of this work was to propose photothermal techniques as methodology and metrology to detect defects accurately through the knowledge of thermal properties, as these are determined by crystalline structure quality involving defects. Complementary techniques such as X-ray diffraction, FTIR spectroscopy, and the Hall effect established a correlation between the thermal, electrical, and structural properties of p-type Si samples with different carrier concentrations. Local variations in the carrier distribution detected using photocarrier radiometry found recombination by localized electronic defects. The absorption coefficient of B–O, Si–O–Si, and H–C–H bonds were obtained to calculate the concentration of BO-related defects, oxygen, and carbon. Carrier lifetime changes due to scattering processes were computed using the Hall effect, which confirmed structural variations. X-ray diffraction elucidated the effect of doping (boron) concentration on the crystalline quality of Si. Boron inclusions introduced dislocations because of smaller atom sizes than Si. Local variations in thermal diffusivity were detected using photoacoustics, phonon-dislocation scattering was responsible for the changes in this thermal property. The heat capacity, thermal conductivity, and diffusivity decreased owing to the crystalline quality and carrier concentration. Heat transport governed by phonons is extrinsically dependent on carrier concentration since it determines the lattice state. It was set up the photothermal measurements as a low-cost control method in order to improve step by step the quality of modern Si wafers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are available under request to authors.

References

  1. M. Ghassemi, M. Kamvar, R. Steinberger-Wilckens, in Fundamentals of Heat and Fluid Flow in High Temperature Fuel Cells. (Academic Press, 2020). doi: https://doi.org/10.1016/C2017-0-03570-X

  2. M. Riede, B. Lüssem, K. Leo, in Comprehensive Semiconductor Science and Technology. (Elsevier Science, 2011).

  3. M.E. Rodriguez-Garcia, A. Mandelis, G. Pan, L. Nicolaides, J.A. García, Y. Riopel, J. Electrochem. Soc. (2000). https://doi.org/10.1149/1.1393254

    Article  Google Scholar 

  4. D.J. Dumin, W.N. Henry, Metall. Trans. (1971). https://doi.org/10.1007/BF02662721

    Article  Google Scholar 

  5. C. Feng, L. Wu, P. Cheng, T. Yang, B. Yu, L. Qian, Mater. Res. Express. (2021). https://doi.org/10.1149/1.1393254

    Article  Google Scholar 

  6. L. Wu, B. Yu, P. Zhang, C. Feng, P. Chen, L. Deng, J. Gao, S. Chen, S. Jian, L. Qian, Phys. Chem. Chem. Phys. (2020). https://doi.org/10.1007/BF02662721

    Article  Google Scholar 

  7. P.H. Huang, C.M. Lu, Sci. World. J. (2014). https://doi.org/10.1007/BF02662721

    Article  Google Scholar 

  8. M. Asheghi, M.N. Touzelbaev, K.E. Goodson, Y.K. Leung, S.S. Wong, Int. J. Heat Mass. Transf. (1998). https://doi.org/10.1115/1.2830059

    Article  Google Scholar 

  9. B. Liao, B. Qiu, J. Zhou, S. Huberman, K. Esfarjani, G. Chen, Phys. Rev. Lett. (2015). https://doi.org/10.1103/PhysRevLett.114.115901

    Article  Google Scholar 

  10. M.B. Bebek, C.M. Stanley, T.M. Gibbons, S.K. Estreicher, Sci. Rep. (2016). https://doi.org/10.1038/srep32150

    Article  Google Scholar 

  11. M.E. Rodriguez-Garcia, A. Gutiérrez, O. Zelaya-Angel, C. Vázquez, J. Giraldo, J. Cryst. Growth (2001). https://doi.org/10.1016/S0022-0248(01)01530-5

    Article  Google Scholar 

  12. K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. Mcgaughey, J.A. Malen, Nat. Commun. 14, 1–8 (2013). https://doi.org/10.1038/ncomms2630

    Article  Google Scholar 

  13. A. Stranz, J. Kähler, K. Kähler, A. Waag, E. Peiner, J. Electron. Mater. (2013). https://doi.org/10.1007/s11664-013-2508-0

    Article  Google Scholar 

  14. L. Khirunenko, M. Sosnin, A. Duvanskii, N. Abrosimov, H. Riemann, Phys. Status Solidi A (2021). https://doi.org/10.1002/pssa.202100181

    Article  Google Scholar 

  15. Z. Zhou, M. Vaqueiro-Contreras, M.K. Juhl, F. Rougieux, IEEE J. Photovolt. (2022). https://doi.org/10.1109/JPHOTOV.2022.3190769

    Article  Google Scholar 

  16. L.D. Dyer, J. Cryst. Growth (1979). https://doi.org/10.1016/0022-0248(79)90136-2

    Article  Google Scholar 

  17. X. Huang, T. Taishi, I. Yonenaga, and K. Hoshikawa, Japanese Journal of Applied Physics. Part 1, Regular Papers & Short Notes (2001). https://doi.org/10.1143/jjap.40.12

  18. B. Gao, M. Juel, M. Mhamdi, J. Cryst. Growth (2016). https://doi.org/10.1016/j.jcrysgro.2016.08.046

    Article  Google Scholar 

  19. H. Asazu, S. Takeuchi, H. Sannai, H. Sudo, K. Araki, Y. Nakamura, K. Izunome, A. Sakai, Thin Solid Films (2014). https://doi.org/10.1016/j.tsf.2013.10.081

    Article  Google Scholar 

  20. A. Lantreibecq, J.P. Monchoux, E. Pihan, B. Marie, M. Legros, Mater. Today Proc. (2018). https://doi.org/10.1016/j.matpr.2018.03.063

    Article  Google Scholar 

  21. V.A. Oliveira, M. Rocha, A. Lantreibecq, M.G. Tsoutsouva, T.N. Tran-Thi, J. Baruchel, D. Camel, J. Cryst. Growth (2018). https://doi.org/10.1016/j.jcrysgro.2018.03.002

    Article  Google Scholar 

  22. A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. Di Sabatino, J. Cryst. Growth (2017). https://doi.org/10.1016/j.jcrysgro.2016.10.077

    Article  Google Scholar 

  23. C.F. Ramirez-Gutierrez, H.D. Martinez-Hernandez, I.A. Lujan-Cabrera, M.E. Rodriguez-Garcia, Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-51200-1

    Article  Google Scholar 

  24. A. Mandelis, J. Batista, D. Shaughnessy, Phys. Rev. B (2003). https://doi.org/10.1103/PhysRevB.67.205208

    Article  Google Scholar 

  25. A. Melnikov, A. Mandelis, A. Soral, C. Zavala-Lugo, M. Pawlak, A.C.S. Appl, Electron. Mat. (2021). https://doi.org/10.1021/acsaelm.1c00100

    Article  Google Scholar 

  26. A. Rosencwaig, A. Gersho, J. Appl. Phys. (1976). https://doi.org/10.1063/1.322296

    Article  Google Scholar 

  27. A. Lara-Guevara, C.J. Ortiz-Echeverri, I. Rojas-Rodriguez, J.C. Mosquera-Mosquera, H. Ariza-Calderón, I. Ayala-Garcia, M.E. Rodriguez-Garcia, Int. J. Thermophys. (2016). https://doi.org/10.1007/s10765-016-2105-6

    Article  Google Scholar 

  28. A. Salazar, A. Sanchez-Lavega, J.M. Terron, J. Appl. Phys. 84, 3031 (1998). https://doi.org/10.1063/1.368457

    Article  ADS  Google Scholar 

  29. E Marı́n, O Delgado-Vasallo, H Valiente, Am. J. Phys. 14, 1–9 (2003). https://doi.org/10.1119/1.1586261

    Article  Google Scholar 

  30. M.Q. Brewster, Thermal Radiative Transfer and Properties (Wiley, New York, 1992)

    Google Scholar 

  31. D. Cárdenas-García, Rev. Mex. Fis. 60, 305–308 (2014)

    Google Scholar 

  32. W. Kaiser, P. Keck, C.F. Lange, Phys. Rev. Lett. (1956). https://doi.org/10.1103/PhysRev.101.1264

    Article  Google Scholar 

  33. R.C. Newman, J.B. Willis, J. Phys. Chem. Solids. 1, 1–2 (1965). https://doi.org/10.1016/0022-3697(65)90166-6

    Article  Google Scholar 

  34. P.J. Gellings, H.J.M. Bouwmeester, The CRC Handbook of Solid State Electrochemistry (CRC Press, Boca Ratón, 1997)

    Google Scholar 

  35. J.C. Irvin, Bell Syst. Tech. J. (1962). https://doi.org/10.1002/j.1538-7305.1962.tb02415.x

    Article  Google Scholar 

  36. S. Wagner, J. Electrochem. Soc. 119, 1570 (1972)

    Article  ADS  Google Scholar 

  37. B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy (CRC Press, Boca Ratón, 1997)

    Google Scholar 

  38. B.C. Jamalaiah, S.N. Rasool, J. Mol. Struct. (2015). https://doi.org/10.1016/j.molstruc.2015.05.028

    Article  Google Scholar 

  39. A. Surmeian, A. Groza, J. Nanomater. (2015). https://doi.org/10.1155/2015/204296

    Article  Google Scholar 

Download references

Acknowledgements

Harol D. Martinez-Hernandez and Porfirio E. Martinez-Munoz wish to thank the Consejo Nacional de Ciencia y Tecnología (CONACYT-México) for the financial support for their studies of master’s degree.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HD contributed to conceptualization, methodology, formal analysis, investigation, writing of the original draft, and writing, reviewing, & editing of the manuscript. PE did photothermal measurements and he also contributed to supervision and conceptualization. CF contributed to reviewing, & editing the manuscript, he also built the photocarrier radiometry image. EU contributed to the Hall effect measurements and analysis. B did the DRX measurements and analysis. ME contributed to conceptualization, methodology, formal analysis, investigation, writing of the original draft, and writing, reviewing, & editing of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Harol D. Martinez-Hernandez.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Hernandez, H.D., Martinez-Munoz, P.E., Ramirez-Gutierrez, C.F. et al. Effect of Intrinsic and Extrinsic Defects on the Structural, Thermal, and Electrical Properties in p-Type CZ-Si Wafers with Different Carrier Concentrations. Int J Thermophys 43, 181 (2022). https://doi.org/10.1007/s10765-022-03110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03110-0

Keywords

Navigation