Skip to main content
Log in

Non-linear in Space Temperature Distribution and Thermo-E.M.F. in a Bipolar Semiconductor

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This study is focused on a new method to determine the thermo-electromotive force (thermo-E.M.F.) of a non-degenerate bipolar semiconductor taking into account recombination heat of non-equilibrium carriers, the non-linear temperature distribution with respect to position, and the existence of two different quasi-levels of Fermi for electrons and holes. The thermo-E.M.F. depends on both bulk and surface recombination processes, the bandgap, the length of the sample, and the thermal conductivity. Moreover, it can be equal to its classical expression for particular values of diffusion length, characteristic length related to surface recombination, and the thickness of the sample. The results also show that there are several possibilities to cancel the contribution of the holes on the thermo-E.M.F. by giving specific quantities to the three previous lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H.J. Goldsmid, Introduction to Thermoelectricity, vol. 121 (Springer, Berlin, 2016)

    Book  Google Scholar 

  2. A.F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling (Infosearch, London, 1957)

    Google Scholar 

  3. J.J. Gong, A.J. Hong, J. Shuai, L. Li, Z.B. Yan, Z.F. Ren, J.-M. Liu, Chem. Phys. 18, 16566–16574 (2016)

    Google Scholar 

  4. L. Zhang, P. Xiao, L. Shi, G. Henkelman, J.B. Goodenough, J. Zhou, J. Appl. Phys. 117, 155103 (2015)

    Article  ADS  Google Scholar 

  5. S. Foster, N. Neophytou, Comput. Mater. Sci. 164, 91–98 (2019)

    Article  Google Scholar 

  6. M. Henry, Physique des Semiconducteurs et des Composants électroniques : Cours et Exercices Corrigés (Dunod, Paris, 2009)

    Google Scholar 

  7. J.P. McKelvey, Solid State and Semiconductor Physics (Krieger Pub Co, Malabar, 1982)

    Google Scholar 

  8. Y.G. Gurevich, G.N. Logvinov, I.N. Volovichev, G. Espejo, O.Y. Titov, A. Meriuts, Phys. Status Solidi B 231, 278–293 (2002)

    Article  ADS  Google Scholar 

  9. Y.G. Gurevich, I. Lashkevych, Int. J. Thermophys. 35, 375–381 (2014)

    Article  ADS  Google Scholar 

  10. Y.G. Gurevich, G.N. Logvinov, G. Espejo, O.Y. Titov, A. Meriuts, Semiconductors 34, 755–758 (2000)

    Article  ADS  Google Scholar 

  11. M.U. Muzaffar, B. Zhu, Q. Yang, Y. Zhou, S. Zhang, Z. Zhang, J. Mater. Today Phys. 9, 100130 (2019)

    Article  Google Scholar 

  12. W.H. Shin, H. Kim, S.Y. Kim, S. Choo, S. Hong, Y. Oh, Y. Yang, Y. Kim, H.J. Park, S. Kim, Energies 13, 337 (2020)

    Article  Google Scholar 

  13. Samuel Foster, Neophytos Neophytou, J. Electron. Mater. 48, 1889–1895 (2019)

    Article  ADS  Google Scholar 

  14. George S. Nolas, Jeffrey Sharp, Julian Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, vol. 45 (Springer, Berlin, 2001)

    Book  Google Scholar 

  15. Yu.G. Gurevich, A. Ortiz, J. Phys. D: Appl. Phys 41, 065410 (2008)

    Article  ADS  Google Scholar 

  16. Y.G. Gurevich, J. Thermoelectr. 2, 5–23 (1997)

    Google Scholar 

  17. Y.G. Gurevich, A. Ortiz, Rev. Mex. Fis. 49, 115–122 (2003)

    Google Scholar 

  18. Y.G. Gurevich, F.P. Rodriguez, Superf. Vacio 20, 24–25 (2007)

    Google Scholar 

  19. Igor Lashkevych, Oleg Titov, Yuri G. Gurevich, Semicond. Sci. Technol. 27, 055014 (2012)

    Article  ADS  Google Scholar 

  20. Y.G. Gurevich, J.E. Velazquez-Perez, G. Espejo-López, I.N. Volovichev, O.Y. Titov, Int. J. Appl. Phys. 101, 023705 (2007)

    Article  ADS  Google Scholar 

  21. Y.G. Gurevich, I. Lashkevych, Int. J. Thermophys. 34, 341–349 (2013)

    Article  ADS  Google Scholar 

  22. I. Lashkevych, Y.G. Gurevich, Int. J. Heat Mass Transf. 92, 430–434 (2016)

    Article  Google Scholar 

  23. Mark Lundstrom, Fundamentals of Carrier Transport, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  24. J.-H. Bahk, A. Shakouri, Phys. Rev. B 93, 165209 (2016)

    Article  ADS  Google Scholar 

  25. V.F. Gantmakher, Y.B. Levinson, Carrier scattering in metals and semiconductors (Elsevier, Amsterdam, 2012)

    Google Scholar 

  26. I. Ch Ballardo Rodriguez, B. El Filali, O. Yu Titov, Yu.G. Gurevich, Int. J. Thermophys. 41, 1–14 (2020)

    Article  Google Scholar 

  27. Y. G. Gurevich, J. E. Velazquez-Perez, in 2006 25th International Conference on Microelectronics, pp. 337–340 (2006)

  28. I. Lashkevych, Y.G. Gurevich, Int. J. Thermophys. 37, 1–11 (2016)

    Article  ADS  Google Scholar 

  29. I. Lashkevych, O.Y. Titov, Y.G. Gurevich, J. Electron. Mater. 46, 585–595 (2016)

    Article  ADS  Google Scholar 

  30. A. Konin, R. Raguotis, Semicond. Sci. Technol. 15, 229–232 (2000)

    Article  ADS  Google Scholar 

  31. Wolfgang KH. Panofsky, Melba Phillips, Classical electricity and magnetism (Courier Corporation, Chelmsford, 2005)

    MATH  Google Scholar 

  32. A.J. Hong, L. Li, R. He, J.J. Gong, Z.B. Yan, K.F. Wang, J.-M. Liu, Z.F. Ren, Sci. Rep. 6, 1–12 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Consejo Nacional de Ciencia y Tecnología Mexico (CONACYT), for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Siewe Kamegni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurevich, Y.G., Lashkevych, I. & Siewe Kamegni, A. Non-linear in Space Temperature Distribution and Thermo-E.M.F. in a Bipolar Semiconductor. Int J Thermophys 43, 117 (2022). https://doi.org/10.1007/s10765-022-03045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03045-6

Keywords

Navigation