Skip to main content
Log in

Impact of the Backbone Connectivity on the Gas Pressure-Dependent Thermal Conductivity of Porous Solids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

It has been shown that structural properties of open porous solids, such as the mean pore size, can be derived from gas pressure-dependent thermal conductivity data. However, a reliable prediction of the total thermal conductivity of a porous sample with complex backbone structure from structural data is not possible, because the degree of coupling of gaseous and solid thermal conduction is hard to estimate. To explore the impact of structural effects, the thermal performance of different model structures, generally characteristic for porous solids (necks, dead ends, tortuosity), was theoretically evaluated by means of finite-difference calculations. As a result, we find that dead ends cause the highest amount of thermal coupling. On the other hand, independent experimental investigations were performed to support the theoretical findings. That means, the gas pressure-dependent thermal conductivities of two sample systems in a nitrogen atmosphere were analyzed: At first, thermal conductivity data for three organic, resorcinol–formaldehyde based aerogels with different structural properties were received from hot-wire measurements. Secondly, the regular cell structure of melamine resin foam was systematically changed by uniaxial compression within a guarded hot plate apparatus prior to determining the resulting thermal conductivity in the direction of compression. Overall, the measured gas pressure-dependent thermal conductivities of both systems indicate that the connectivity of the solid network significantly affects the solid–gas coupling term in porous solids. Both the experimental and theoretical results show that the coupling term decreases with increasing connectivity of the backbone material of a porous solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. T.W. Clyne, I.O. Golosnoy, J.C. Tan, A.E. Markaki, Philos. Trans. R. Soc. A 364, 125–146 (2006)

    Article  ADS  Google Scholar 

  2. G. Reichenauer, H.-P. Ebert, NanoS 01(08), 17–22 (2008)

    Google Scholar 

  3. K. Swimm, G. Reichenauer, S. Vidi, H.-P. Ebert, Int. J. Thermophys. 30, 1329–1342 (2009)

    Article  ADS  Google Scholar 

  4. K. Swimm, S. Vidi, G. Reichenauer, H.-P. Ebert, J. Non-Cryst, Solids 456, 114–124 (2017)

    Google Scholar 

  5. G. Reichenauer, U. Heinemann, H.-P. Ebert, Colloids Surf. A 300, 204–2010 (2007)

    Article  Google Scholar 

  6. O.-J. Lee, K.-H. Lee, T.J. Yim, S.Y. Kim, K.-P. Yoo, J. Non-Cryst, Solids 298, 287–292 (2002)

    Google Scholar 

  7. A. Griesinger, K. Spindler, E. Hahne, Int. J. Heat Mass Transf. 42, 4363–4374 (1999)

    Article  Google Scholar 

  8. R. Coquard, D. Baillis, V. Grigorova, F. Enguehard, D. Quenard, P. Levitz, J. Non-Cryst, Solids 363, 103–115 (2013)

    Google Scholar 

  9. J.-J. Zhao, Y.-Y. Duan, X.-D. Wang, B.-X. Wang, J. Non-Cryst, Solids 358, 1287–1297 (2012)

    Google Scholar 

  10. C. Bi, G.H. Tang, Z.J. Hu, Int. J. Heat Mass Transf. 73, 103–109 (2014)

    Article  Google Scholar 

  11. C. Bi, G.H. Tang, Z.J. Hu, H.L. Yang, J.N. Li, Int. J. Heat Mass Transf. 79, 126–136 (2014)

    Article  Google Scholar 

  12. G. Wei, Y. Liu, X. Zhang, F. Yu, X. Du, Int. J. Heat Mass Transf. 54, 2355–2366 (2011)

    Article  Google Scholar 

  13. H. Zhang, W. Fang, Z. Li, W. Tao, Int. Commun. Heat Mass Transf. 68, 158–161 (2015)

    Article  Google Scholar 

  14. H.-P. Ebert, in Aerogels Handbook, ed. By M. A. Aegerter, N. Leventis, M. M. Koebel (Springer Science+Business Media, New York, 2011)

  15. M. Kaganer, Thermal Insulation in Cryogenic Engineering (Israel Program for Scientific Translations, Jerusalem, 1969)

  16. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, Auckland, 1985)

    Google Scholar 

  17. K. Swimm, G. Reichenauer, S. Vidi, H.-P. Ebert, J. Sol-Gel Sci. Technol. 84, 466–474 (2017)

    Article  Google Scholar 

  18. W. Umrath, Fundamentals of Vacuum Technology (Leybold AG, Cologne, 1998)

  19. H. Kuchling, Taschenbuch Der Physik (Fachbuchverlag Leipzig, München, Wien, 1999)

    Google Scholar 

  20. N. Wakao, D. Vortmeyer, Chem. Eng. Sci. 26, 1753–1765 (1971)

    Article  Google Scholar 

  21. A. Emmerling, J. Fricke, J. SolGel Sci. Technol. 8, 781–788 (1997)

    Google Scholar 

  22. L.J. Gibson, M.F. Ashby, Cellular Solids—Structure and Properties, 2nd edn. (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  23. J. Groß, Die Schallgeschwindigkeit von Aerogelen und ihre Variation mit Dichte, Gasdruck und elastischer Vorspannung, Dissertation, Universität Würzburg (1992)

  24. R. W. Pekala, F. M. Kong, in Proceedings of 2nd Int. Symp. on Aerogels, C4-33–C4-40 (1989)

  25. M. Wiener, G. Reichenauer, T. Scherb, J. Fricke, J. Non-Cryst, Solids 350, 126–130 (2004)

    Google Scholar 

  26. B. Stalhane, S. Pyk, Teknisk Tidskrift 61, 389–393 (1931)

    Google Scholar 

  27. H.-P. Ebert, V. Bock, O. Nilsson, J. Fricke, High Temp. 25, 391–402 (1993)

    Google Scholar 

  28. R. C. Weast, Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1984–1985)

  29. U. Heinemann, J. Hetfleisch, R. Caps, J. Kuhn, J. Fricke, in Proceedings of Eurotherm Seminar 44, 155–164 (1995)

  30. L. Weigold, G. Reichenauer, J. Supercrit. Fluids 106, 69–75 (2015)

    Article  Google Scholar 

  31. K. Swimm, Experimentelle und theoretische Untersuchungen zur gasdruckabhängigen Wärmeleitfähigkeit von porösen Materialien, Dissertation, Universität Würzburg (2016)

Download references

Acknowledgements

The authors would like to thank Mrs. D. Winkler and Mr. P. Ponath for the support during the hot-wire measurements within the framework of their theses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Swimm.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swimm, K., Vidi, S., Reichenauer, G. et al. Impact of the Backbone Connectivity on the Gas Pressure-Dependent Thermal Conductivity of Porous Solids. Int J Thermophys 43, 8 (2022). https://doi.org/10.1007/s10765-021-02936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02936-4

Navigation