Skip to main content
Log in

Investigations of Electrical Resistivity and Thermal Conductivity Dependences on Growth Rate in the Al–Cu–Ti Eutectic Alloy

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Directional solidification of Al–Cu–Ti (Al–33wt%Cu–0.1wt%Ti) eutectic alloy was done with a growth rate range (V = 8.58 to 2038.65 µm⋅s−1) at a temperature gradient of 6.45 K⋅mm−1 using Bridgman-type directional solidification furnace. The measurements of thermal conductivity (K) and electrical resistivity (\(\rho\)) for the Al–Cu–Ti alloy solidified with the different values of V were made by the longitudinal heat flow method (LHFM) and DC four-point probe technique (FPPT). While the highest values of K and ρ were determined to be 236.04 W⋅K–1⋅m–1 and 5.91 × 10−8 Ωm, respectively, at 8.58 μm⋅s–1, the lowest values of K and ρ were obtained to be 199.82 W⋅K–1⋅m–1 and 12.11 × 10−8 Ωm, respectively, at 2038.65 μm⋅s–1. The K and ρ dependences on V were obtained to be \(K = 259.96\; \times \,V_{{}}^{ - 0.032}\) and \(\rho = 4.47\; \times \;{10}^{{ - {8}}} \, V_{{}}^{0.13}\) from linear regression analysis. The fusion enthalpy (∆H) and specific heat difference between solid and liquid (∆CP) for the Al–Cu–Ti were also determined to be 222.69 J⋅g–1 and 0.266 Jg–1⋅K–1, respectively, by means of differential scanning calorimetry (DSC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Auchet, J.L. Bretonnet, Rev. Int. Hautes Temper. Refract. 26, 181 (1990)

    Google Scholar 

  2. H. Jones, W. Kurz, Z. Metallkunde 4, 792 (1981)

    Google Scholar 

  3. Y.S. Sun, G.W. Lorimer, N. Ridley, Metall. Trans. 21A, 575 (1990)

    Article  Google Scholar 

  4. I. Ziv, F. Weinberg, Metall. Trans. B. 20B, 731 (1989)

    Article  ADS  Google Scholar 

  5. C.Y. Wang, C. Beckermann, Metall. Mater. Trans. A. 25A, 1081 (1994)

    Article  ADS  Google Scholar 

  6. H.B. Dong, P.D. Lee, Acta Mater. 53, 659 (2005)

    Article  ADS  Google Scholar 

  7. M. Rhême, F. Gonzales, M. Rappaz, Scripta Mater. 59, 440 (2008)

    Article  Google Scholar 

  8. W.R. Osório, J.R. Spinelli, N. Cheung, A. Garcia, Mater. Sci. Eng. A 420, 179 (2006)

    Article  Google Scholar 

  9. J. De Wilde, L. Froyen, S. Rex, Scripta Mater. 51, 533 (2004)

    Article  Google Scholar 

  10. K.A. Jackson, J.D. Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966)

    Google Scholar 

  11. D.M. Stefanescu, G.J. Abbaschian, R.J. Bayuzick, Solidification Processing of Eutectic Alloys (Metallurgical Society Inc., Pennsylvania, 1989), pp. 4–8

    Google Scholar 

  12. A. Ourdjini, L. Liu, R. Elliott, Mater. Sci. Technol. 10, 312 (1994)

    Article  Google Scholar 

  13. S. M. D. Borland, R. Elliott, Metall. Trans. A 9, 1063 (1078)

  14. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trived, Acta Mater. 57, 941 (2009)

    Article  ADS  Google Scholar 

  15. H. Kaya, E. Çadırlı, M. Gündüz, J. Mater. Process. Technol. 183, 310 (2007)

    Article  Google Scholar 

  16. E. Çadırlı, İ Yılmazer, M. Şahin, H. Kaya, Trans. Indian Inst. Met. 68, 817 (2015)

    Article  Google Scholar 

  17. U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, K. Keşlioğlu, Curr. Appl. Phys. 12, 7 (2012)

    Article  ADS  Google Scholar 

  18. Y. Kaygısız, N. Maraşlı, Phys. Metals Metall. 118, 389 (2017)

    Article  ADS  Google Scholar 

  19. S. Engin, U. Böyük, N. Maraşlı, J. Alloys Compd. 660, 23 (2016)

    Article  Google Scholar 

  20. Ü. Bayram, N. Maraşlı, Metall. Mater. B 49B, 3293 (2018)

    Article  Google Scholar 

  21. Ü. Bayram, Investigation of The Dependence of Mechanical, Electrical and Thermal Properties with Structure Parameters on The Growth Rates in The Directionally Solidified Aluminium and Zinc Based Multi Components Alloys (D. Ph. Thesis, Erciyes University Kayseri-Turkey 2013) pp. 145–156

  22. Ü. Bayram, N. Maraşlı, J. Alloys Compd. 753, 695 (2018)

    Article  Google Scholar 

  23. V. Rudnev, D. Loveless, R. Cook, M. Black, Handbook of Induction Heating (Markel Dekker Inc., New York, 2003), pp. 119–120

    Google Scholar 

  24. L.B. Valdes, Proc. IRE. 42, 420 (1954)

    Article  Google Scholar 

  25. M. Şahin, E. Çadırlı, Ü. Bayram, P. Ata Esener, J. Thermal Anal. Calorim. 132, 317 (2018)

    Article  Google Scholar 

  26. J. B. Biot, Traite de Physique 4 (Paris 1816) p. 669

  27. J. B. J. Fourier, The Analytical Theory of Heat (Gauthier-Villars, Paris 1822,; English translation by Freeman, A. Cambridge University Press,1878; new edition of the English translation, Dover Publication; New York 1955) p. 466

  28. S. Aksöz, E. Öztürk, N. Maraşlı, Measurement 46, 161 (2013)

    Article  ADS  Google Scholar 

  29. S. Akbulut, Y. Ocak, K. Keşlioğlu, N. Maraşlı, J. Phys. Chem. Solids 70, 72 (2009)

    Article  ADS  Google Scholar 

  30. Materials Science International Team, Light Metal Systems (Part 2 Volume 11A2, the series Landolt-Börnstein-Group IV Physical Chemistry Al-Cu-Ni, Aluminium-Copper-Titanium 2003) pp. 156–173

  31. V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminium Alloys (Elsevier, Pittsburgh, 2007), pp. 34–35

    Google Scholar 

  32. G. T. Meaden, Electrical Resistance of Metals (International Cryogenics Monograph Series. Chapter 1 Springer Science- Business Media, France, LLC 4 1965) pp. 12–58

  33. S. Aksöz, Y. Ocak, N. Maraşlı, E. Çadırlı, H. Kaya, U. Böyük, Exp. Thermal Fluid Sci. 34, 1507 (2010)

    Article  Google Scholar 

  34. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens, Thermal Conductivity Metallic Elements and Alloys (IFI Plenum, New York, 1970), pp. 1–8

    Book  Google Scholar 

  35. M. Gündüz, J.D. Hunt, Acta Mater. 33, 1651 (1985)

    Article  Google Scholar 

  36. C. Kittel, Introduction to Solid State Physics, 6th edn. (Wiley, New York, 1965), pp. 152–153

    Google Scholar 

  37. A. Zolfaghari, T.T. Chen, A.Y. Yi, Int. J. Extrem. Manuf. 1, 012005 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Erciyes University Scientific Research Project Unit under Contract No: FDK-2013-4741. The researchers are thankful to Erciyes University Scientific Research Project Unit for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmettin Maraşlı.

Ethics declarations

Conflict of interest

The authors claim that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maraşlı, N., Bayram, Ü. Investigations of Electrical Resistivity and Thermal Conductivity Dependences on Growth Rate in the Al–Cu–Ti Eutectic Alloy. Int J Thermophys 42, 94 (2021). https://doi.org/10.1007/s10765-021-02845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02845-6

Keywords

Navigation