Skip to main content
Log in

The variations of electrical resistivity and thermal conductivity with growth rate for the Zn–Al–Cu eutectic alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Zn–Al–Cu alloy (Zn–5wt%Al–0.5wt%Cu) is solidified with different growth rates (V = 8.45–2087.15 µm s−1) at a constant temperature gradient (G = 3.67 K mm−1) using Bridgman-type directional solidification apparatus (BTDSA). The thermal conductivity (K) and electrical resistivity (ρ) for the Zn–Al–Cu alloy solidified with the different V values are measured by the longitudinal heat flow method (LHFM) and DC four-point probe technique (FPPT), respectively. The λ and K decrease with the increasing V, while the ρ increases with increasing V in the Zn–Al–Cu eutectic alloy. The dependences of ρ and K on λ and V for the Zn–Al–Cu eutectic alloy are obtained as \(\rho = 9.98 \times {{10}}^{{ - {{8}}}} \lambda^{{ - 0.18}}\), \(\rho = 7.03 \times {{10}}^{{ - {{8}}}} V_{{}}^{{0.07}}\), \(K = 110.91\lambda ^{{0.104}}\) and \(K = 144.59V_{{}} ^{{ - 0.040}}\), respectively. The melting enthalpy (ΔHf) and specific heat difference between solid and liquid phases (ΔCp) for the Zn–Al–Cu eutectic alloy are determined as 113.89 J g−1 and 0.172 J g−1 K−1, respectively, by the differential scanning calorimetry (DSC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Zhang, K. Chu, S. He, B. Wang, W. Zhu, F. Ren, Mater. Sci. Eng. C. 106, 110165 (2020)

    Article  CAS  Google Scholar 

  2. L. Li, M. Zhao, L. Dong, D. Li, Surf. Coat. Technol. 394, 125870 (2020)

    Article  CAS  Google Scholar 

  3. X. Li, J. Liang, T. Shi, D. Yang, X. Chen, C. Zhang, Z. Liu, D. Liu, Q. Zhang, Ceram. Int. 46, 12911–12920 (2020)

    Article  CAS  Google Scholar 

  4. T. Wan, K. Chu, J. Fang, C. Zhong, Y. Zhang, X. Ge, Y. Ding, F. Ren, J. Mater. Sci. Technol. 80, 266–278 (2021)

    Article  Google Scholar 

  5. J.T. Krüger, K.P. Hoyer, V. Filor, S. Pramanik, M. Kietzmann, J. Meißner, M. Schaper, J. Alloys Compd. 871, 159544 (2021)

    Article  CAS  Google Scholar 

  6. I. Papageorgiou, C. Brown, R. Schins, S. Singh, R. Newson, S. Davis, J. Fisher, E. Ingham, C.P. Case, Biomaterials 28, 2946–2958 (2007)

    Article  CAS  Google Scholar 

  7. E. Guillamet, A. Creus, M. Farina, E. Sabbioni, S. Fortaner, R. Marcosa, Mutat. Res. 654, 22–28 (2008)

    Article  CAS  Google Scholar 

  8. D. Cadosch, E. Chan, O.P. Gautschi, L. Filgueira, J. Biomed. Mater. Res. A 91, 1252–1262 (2009)

    Article  CAS  Google Scholar 

  9. B. Scharf, C.C. Clement, V. Zolla, G. Perino, B. Yan, S.G. Elci, E. Purdue, S.R. Goldring, F. Macaluso, N. Cobelli, R.W. Vachet, L. Santambrogio, Sci. Rep. 4, 5729 (2015)

    Article  CAS  Google Scholar 

  10. G. Song, Corros. Sci. 49, 1696–1701 (2007)

    Article  CAS  Google Scholar 

  11. H. Wang, Z.M. Shi, K. Yang, Adv. Mater. Res. 32, 207–210 (2008)

    Article  Google Scholar 

  12. C.K. Seal, K. Vince, M.A. Hodgson, IOP Conf. Series 4, 1 (2009)

    Google Scholar 

  13. C.W. Lin, C.P. Ju, J.H. Chern-Lin, Biomaterials 26, 2899–2907 (2005)

    Article  CAS  Google Scholar 

  14. V. Kumar, K.D. Gill, Arch. Toxicol. 83, 965–978 (2009)

    Article  CAS  Google Scholar 

  15. P.K. Bowen, J.-M. Seitz, R.J. Guillory, J.P. Braykovich, S. Zhao, J. Goldman, J.W. Drelich, J. Biomed. Mater. Res. B 106, 245–258 (2018)

    Article  CAS  Google Scholar 

  16. I.L.Z.R. Organization Engineering Properties of Zinc Alloys. International Lead Zinc Research Organization (1980)

  17. E.M. da Costa, C.E. da Costa, F.D. Vecchia, C. Rick, M. Scherer, C.A. dos Santos, B.A. Dedavid, J. Alloys Compd. 488, 89–99 (2009)

    Article  CAS  Google Scholar 

  18. R. Caram, S. Milenkovic, J. Cryst. Growth 198–199; Part I, 844–849 (1999)

    Article  Google Scholar 

  19. S.O. Adeosun, S.A. Balogun, L.O. Osoba, W.A. Ayoola, A.M. Oladoye, J. Mod. Manufact. Technol. 3, 103–110 (2011)

    Google Scholar 

  20. D. Villegas-Cardenas, M.L. Saucedo-Muñoz, V.M. Lopez-Hirata, H.J. Dorantes-Rosales, J.L. Gonzalez-Velazquez, Mater. Res. 17, 1137–1144 (2014)

    Article  Google Scholar 

  21. X. Li, T. Shi, B. Li, X. Chen, C. Zhang, Z. Guo, Q. Zhang, Mater. Des. 183, 108152 (2019)

    Article  CAS  Google Scholar 

  22. X. Ren, H. Fu, J. Xing, Y. Yi, Mater. Sci. Eng. A 742, 617–627 (2019)

    Article  CAS  Google Scholar 

  23. E.A. Eid, E.H. El-Khawas, A.S. Abd-Elrahman, J. Mater. Sci: Mater. Electron. 30, 6507–6518 (2019)

    CAS  Google Scholar 

  24. Y. Yokota, S. Horii, H. Ogino, M. Ogino, A. Yoshino, Y. Yamaji, S. Ohashi, K. Kurosawa, A.Y. Kamada, J. Electron. Mater. 48, 1827–1832 (2019)

    Article  CAS  Google Scholar 

  25. N. Ramesh Babu, M.R. Ramesh, S. Kiran Aithal, SILICON 12, 701–713 (2020)

    Article  CAS  Google Scholar 

  26. W. Yang, D.D.L. Chung, J. Mater. Sci: Mater. Electron. 32, 7867–7874 (2021)

    CAS  Google Scholar 

  27. D.A. Porter, K.E. Easterlirng, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC Press, New York, 1992), pp. 189–229

    Book  Google Scholar 

  28. H.Z. Fu, L. Liu, Mat. Sci. Forum 475–479, 607–612 (2005)

    Article  Google Scholar 

  29. A.E. Ares, L.M. Gassa, C.M. Mendez, Corrosion Resistance of Directionally Solidified Casting Zinc–Aluminium Matrix, Ed Dr. Shih (2012)

  30. M. Rhême, F. Gonzales, M. Rappaz, Scr. Mater. 59, 440–443 (2008)

    Article  CAS  Google Scholar 

  31. F. Gonzales, M. Rappaz, Metall. Mater. Trans. A 37, 2797–2806 (2006)

    Article  Google Scholar 

  32. C. Zhang, Y. Wu, M. Fang, S. Wu, X. We, Y. Cheng, Y. Sun, Chin. Sci. Bull. 42, 2067–2072 (1997)

    Article  CAS  Google Scholar 

  33. K.A. Jackson, J.D. Hunt, Trans. Metall. Soc. AIME 236, 1129–1142 (1966)

    CAS  Google Scholar 

  34. R.M. Jordan, J.D. Hunt, Metall. Trans. A 2, 3401–3410 (1971)

    Article  CAS  Google Scholar 

  35. R. Seetharaman, Trivedi. Metall. Trans. A 19, 2955–2964 (1988)

    Article  Google Scholar 

  36. J.J. Favier, J. De Goer, Directional Solidification of Eutectic Alloys. European Space Agency Special Publications ESA SP-222 Paris, 127-128 (1984)

  37. V.T. Witusiewicz, U. Hecht, S. Rex, M. Apel, Acta Mater. 53, 3663–3669 (2005)

    Article  CAS  Google Scholar 

  38. H. Kaya, E. Çadırlı, M. Gündüz, J. Mat, Process Technol. 183, 310–320 (2007)

    Article  CAS  Google Scholar 

  39. H. Kaya, E. Çadırlı, M. Gündüz, J. Mater. Eng. Perf. 12, 456–469 (2003)

    Article  CAS  Google Scholar 

  40. S. Engin, U. Böyük, H. Kaya, N. Maraşlı, Int. J. Min. Metal. Mater. 18, 659–664 (2011)

    Article  CAS  Google Scholar 

  41. E. Çadırlı, M. Şahin, J. Mater. Sci. 46, 1414–1423 (2011)

    Article  CAS  Google Scholar 

  42. Ü. Bayram, Y. Karamazı, P. Ata, S. Aksöz, K. Keşlioğlu, N. Maraşlı, Int. J. Mater. Res. 107, 1005–1015 (2016)

    Article  CAS  Google Scholar 

  43. Y. Karamazı, Ü. Bayram, P. Ata, S. Aksöz, K. Keşlioğlu, N. Maraşlı, Trans. Nonferrous Met. Soc. China 26, 2320–2335 (2016)

    Article  CAS  Google Scholar 

  44. Ü. Bayram, Investigation of the dependence of mechanical, electrical and thermal properties with structure parameters on the growth rates in the controlled directionally solidified aluminium contained multiple eutectic alloys, D. Ph. Thesis Erciyes University Kayseri-Turkey (2017)

  45. Y. Ocak, S. Aksöz, N. Maraşlı, E. Çadırlı, Fluid Pha. Equil. 295, 60–67 (2010)

    Article  CAS  Google Scholar 

  46. S. Aksöz, Y. Ocak, N. Maraşlı, K. Keşlioğlu, Exp. Ther. Fluid Sci. 35, 395–404 (2011)

    Article  CAS  Google Scholar 

  47. E. Öztürk, S. Aksöz, K. Keşlioğlu, N. Maraşlı, Therm. Acta 554, 63–70 (2013)

    Article  CAS  Google Scholar 

  48. Ü. Bayram, N. Maraşlı, J. Alloys Compd. 753, 695–702 (2018)

    Article  CAS  Google Scholar 

  49. V. Rudnev, D. Loveless, R. Cook, M. Black, Handbook of Induction Heating (Markel Dekker Inc., New York, 2003)

    Google Scholar 

  50. L.B. Valdes, Proc. IRE. 42, 420–427 (1954)

    Article  Google Scholar 

  51. H. Kaya, U. Böyük, S. Engin, E. Çadırlı, N. Maraşlı, J. Electron. Mater. 39, 303–311 (2010)

    Article  CAS  Google Scholar 

  52. E. Çadırlı, U. Böyük, H. Kaya, N. Maraşlı, S. Aksöz, Y. Ocak, J. Electron. Mater. 40, 195–200 (2011)

    Article  CAS  Google Scholar 

  53. J.B. Biot, Traite de Physique. Paris 4, 669 (1816)

    Google Scholar 

  54. J.B.J. Fourier, The Analytical Theory of Heat (Dover Publication, New York, 1955)

    Google Scholar 

  55. S. Aksöz, E. Öztürk, N. Maraşlı, Measurement 46, 161–170 (2013)

    Article  Google Scholar 

  56. N. Aksöz, E. Öztürk, Ü. Bayram, S. Aksöz, S. Kervan, A. Ülgen, N. Maraşlı, J. Electron. Mater. 42, 3573–3581 (2013)

    Article  CAS  Google Scholar 

  57. Materials Science International Team, Light Metal Systems, Part 2 Volume 11A2, of the series Landolt–Börnstein–Group IV Physical Chemistry Aluminium–Copper–Zinc. pp. 182–205 (2003)

  58. V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminium Alloys (Elsevier, Pittsburgh, 2007), pp. 34–35

    Google Scholar 

  59. G.T. Meaden, Electrical Resistance of Metals, International Cryogenics Monograph Series, Chapter 1, Springer Science, France, LLC (1965)

  60. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemensi, Thermal Conductivity Metallic Elements and Alloys, vol. 1 (IFI, New York, 1970), pp. 1–10

    Book  Google Scholar 

  61. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemen, Thermal Conductivity Metallic Elements and Alloys, vol. 1 (IFI, New York, 1970), pp. 450–460

    Google Scholar 

  62. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemensi, Thermal Conductivity Metallic Elements and Alloys, vol. 1 (IFI, New York, 1970), pp. 25–40

    Google Scholar 

  63. S. Aksöz, Y. Ocak, N. Maraşlı, K. Keşlioğlu, Fluid Phase Equilib. 293, 32–41 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The researchers are thankful to Erciyes University Scientific Research Project Unit for their financial supports under Contract Number: FDK-2013-4741.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmettin Maraşlı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maraşlı, N., Bayram, Ü. & Aksöz, S. The variations of electrical resistivity and thermal conductivity with growth rate for the Zn–Al–Cu eutectic alloy. J Mater Sci: Mater Electron 32, 18212–18223 (2021). https://doi.org/10.1007/s10854-021-06363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06363-x

Navigation