Skip to main content
Log in

Experimental and Simulation Studies on Thermoelectric Cooler: A Performance Study Approach

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The current experimental and simulation studies focus on two distinctive approaches on developing performance specifications on a typical thermoelectric cooler. The performance specifications considered for the current study involves cooling capacity, voltage, and current for different temperature ranges on hot side of the module. Simulation studies were carried out using COMSOL Multiphysics software for analyzing the coefficient of performance (COP). Thermoelectric cooler’s performance was simulated for the module’s hot side temperature ranges of about 303.15–333.15 K with a stipulated temperature interval of around 5 K. COP is evaluated at various temperature ranges (20 K, 40 K, and 60 K) over the module for each temperature prevailing on the hot side. The whole system is numerically modeled and the final attained results were correlated with the results obtained from simulation. Factors considered for modeling includes Seebeck coefficient, thermal conductivity, and resistivity variation of the Peltier elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.H. Meng, X.D. Wang, X.X. Zhang, Transient modeling and dynamic characteristics of thermoelectric cooler. Appl. Energy 108, 340–348 (2013)

    Article  Google Scholar 

  2. T. Gong, L. Gao, Y. Wu, H. Tan, F. Qin, T. Ming, J. Li, Transient thermal stress analysis of a thermoelectric cooler under pulsed thermal loading. Appl. Therm. Eng. 162, 114240 (2019)

    Article  Google Scholar 

  3. J. Wang, P. Cao, X. Li, X. Song, C. Zhao, L. Zhu, Experimental study on the influence of Peltier effect on the output performance of thermoelectric generator and deviation of maximum power point. Energy Convers. Manag. 200, 112074 (2019)

    Article  Google Scholar 

  4. D. Enescu, E.O. Virjoghe, A review on thermoelectric cooling parameters and performance. Renew. Sustain. Energy Rev. 38, 903–916 (2014)

    Article  Google Scholar 

  5. D. Zhao, G. Tan, A review of thermoelectric cooling: materials, modeling and applications. Appl. Therm. Eng. 66, 15–24 (2014)

    Article  ADS  Google Scholar 

  6. L.G.L. Ponce, F. Chejne, L.M.R. Aristeguieta, C.A. Gómez, A.F.M. Cano, Predicting a thermal stimulator’s heating/cooling rate for medical applications. Appl. Therm. Eng. 163, 114376 (2019)

    Article  Google Scholar 

  7. G. Chen, Y. Tang, Z. Wan, G. Zhong, H. Tang, J. Zeng, Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics. Int. Commun. Heat Mass Transf. 100, 12–19 (2019)

    Article  Google Scholar 

  8. P. MohanKumar, V. Jagadeesh Babu, A. Subramanian, A. Bandla, N. Thakor, S. Ramakrishna, H. Wei, Thermoelectric materials—strategies for improving device performance and its medical applications. Sci 1, 37 (2019)

    Article  Google Scholar 

  9. L. Chen, F. Meng, Y. Ge, F. Sun, Optimum variables selection of thermoelectric generator-driven thermoelectric refrigerator at different source temperature. Int. J. Ambient Energy 33, 108–117 (2012)

    Article  Google Scholar 

  10. A. Şişman, H. Yavuz, The effect of Joule losses on the total efficiency of a thermoelectric power cycle. Energy 20, 573–576 (1995)

    Article  Google Scholar 

  11. S.A. Omer, D.G. Infield, Design optimization of thermoelectric devices for solar power generation. Sol. Energy Mater. Sol. Cells 53, 67–82 (1998)

    Article  Google Scholar 

  12. X. Lin, S. Mo, L. Jia, Z. Yang, Y. Chen, Z. Cheng, Experimental study and Taguchi analysis on LED cooling by thermoelectric cooler integrated with microchannel heat sink. Appl. Energy 242, 232–238 (2019)

    Article  Google Scholar 

  13. J. Mao, H. Zhu, Z. Ding, Z. Liu, G.A. Gamage, G. Chen, Z. Ren, High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019)

    Article  ADS  Google Scholar 

  14. E. Kanimba, Z. Tian, A new dimensionless number for thermoelectric generator performance. Appl. Therm. Eng. 152, 858–864 (2019)

    Article  Google Scholar 

  15. P. Naphon, S. Wiriyasart, C. Hommalee, Experimental and numerical study on thermoelectric liquid cooling module performance with different heat sink configurations. Heat Mass Transf. 55, 1–10 (2019)

    Article  Google Scholar 

  16. A. Fabián-Mijangos, G. Min, J. Alvarez-Quintana, Enhanced performance thermoelectric module having asymmetrical legs. Energy Convers. Manag. 148, 1372–1381 (2017)

    Article  Google Scholar 

  17. S.M. Pourkiaei, M.H. Ahmadi, M. Sadeghzadeh, S. Moosavi, F. Pourfayaz, L. Chen, M.A. Yazdi, R. Kumar, Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials. Energy (2019). https://doi.org/10.1016/j.energy.2019.07.179

    Article  Google Scholar 

  18. J. Batra, V. Dabra, P. Sharma, V. Saini, Performance evaluation of thermoelectric refrigerator based on natural and forced mode of cooling processes, Advances in Fluid and Thermal Engineering (Springer, Singapore, 2019), pp. 317–324

    Chapter  Google Scholar 

  19. Y. Wang, Y. Shi, D. Liu, Performance analysis and experimental study on thermoelectric cooling system coupling with heat pipe. Procedia Eng. 205, 871–878 (2017)

    Article  Google Scholar 

  20. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, X. Zhao, Recent development and application of thermoelectric generator and cooler. Appl. Energy 143, 1–25 (2015)

    Article  ADS  Google Scholar 

  21. K. Wang, E. Meyhofer, P. Reddy, Thermal and thermoelectric properties of molecular junctions, Advanced Functional Materials (Wiley, Hoboken, 2019), p. 1904534

    Google Scholar 

  22. X. Wang, M. Lundstrom, Limitations of zT as a Figure of Merit for Nanostructured Thermoelectric Materials. (2019) arXiv preprint, arXiv:1906.09711

  23. H.J. Goldsmid, Review of thermoelectric materials, Introduction to Thermoelectricity (Springer, Berlin, 2016), pp. 153–195

    Chapter  Google Scholar 

  24. T. Guclu, E. Cuce, Thermoelectric coolers (TECs): from theory to practice. J. Electron. Mater. 48, 211–230 (2019)

    Article  ADS  Google Scholar 

  25. I. Bhaumik, M. Singh, P. Gaur. Thermodynamic assessment of a concentrated photovoltaic thermoelectric system. Available at SSRN 3462925 (2019)

  26. S. Wiriyasart, C. Hommalee, P. Naphon, Thermal cooling enhancement of dual processors computer with thermoelectric air cooler module. Case Stud. Therm. Eng. 14, 100445 (2019)

    Article  Google Scholar 

  27. K. Wang, M. Guan, F. Chen, W.H. Liao, A low-power thermoelectric energy harvesting system for high internal resistance thermoelectric generators. J Electron. Mater. 48, 1–15 (2019)

    Article  Google Scholar 

  28. L. Lin, Y.F. Zhang, H.B. Liu, J.H. Meng, W.H. Chen, X.D. Wang, A new configuration design of thermoelectric cooler driven by thermoelectric generator. Appl. Therm. Eng. 160, 114087 (2019)

    Article  Google Scholar 

  29. Y. Cai, W.W. Wang, W.T. Ding, G.B. Yang, D. Liu, F.Y. Zhao, Entropy generation minimization of thermoelectric systems applied for electronic cooling: parametric investigations and operation optimization. Energy Convers. Manag. 186, 401–414 (2019)

    Article  Google Scholar 

  30. B. Qian, F. Ren, Cooling performance of transverse thermoelectric devices. Int. J. Heat Mass Transf. 95, 787–794 (2016)

    Article  Google Scholar 

  31. M. Ibañez-Puy, J. Bermejo-Busto, C. Martín-Gómez, M. Vidaurre-Arbizu, J.A. Sacristán-Fernández, Thermoelectric cooling heating unit performance under real conditions. Appl. Energy 200, 303–314 (2017)

    Article  Google Scholar 

  32. V.P. Joshi, V.S. Joshi, H.A. Kothari, M.D. Mahajan, M.B. Chaudhari, K.D. Sant, Experimental investigations on a portable fresh water generator using a thermoelectric cooler. Energy Procedia 109, 161–166 (2017)

    Article  Google Scholar 

  33. M. Ma, J. Yu, Experimental study on transient cooling characteristics of a realistic thermoelectric module under a current pulse operation. Energy Convers. Manag. 126, 210–216 (2016)

    Article  Google Scholar 

  34. D. Liu, Y. Cai, F.Y. Zhao, Optimal design of thermoelectric cooling system integrated heat pipes for electric devices. Energy 128, 403–413 (2017)

    Article  Google Scholar 

  35. X. Sun, Y. Yang, H. Zhang, H. Si, L. Huang, S. Liao, X. Gu, Experimental research of a thermoelectric cooling system integrated with gravity assistant heat pipe for cooling electronic devices. Energy Procedia 105, 4909–4914 (2017)

    Article  Google Scholar 

  36. W. Tipsaenporm, C. Lertsatitthanakorn, B. Bubphachot, M. Rungsiyopas, S. Soponronnarit, Improvement of cooling performance of a compact thermoelectric air conditioner using a direct evaporative cooling system. J. Electron. Mater. 41, 1186–1192 (2012)

    Article  ADS  Google Scholar 

  37. S. Lineykin, S. Ben-Yaakov, Modeling and analysis of thermoelectric modules. IEEE Trans. Ind. Appl. 43, 505–512 (2007)

    Article  Google Scholar 

  38. C. Selvam, S. Manikandan, S.C. Kaushik, R. Lamba, S. Harish, Transient performance of a Peltier super cooler under varied electric pulse conditions with phase change material. Energy Convers. Manag. 198, 111822 (2019)

    Article  Google Scholar 

  39. D. Sun, G. Liu, L. Shen, H. Chen, Y. Yao, S. Jin, Modeling of high power light-emitting diode package integrated with micro-thermoelectric cooler under various interfacial and size effects. Energy Convers. Manag. 179, 81–90 (2019)

    Article  Google Scholar 

  40. T. Lu, X. Zhang, J. Zhang, P. Ning, Y. Li, P. Niu, Multi-objective optimization of thermoelectric cooler using genetic algorithms. AIP Adv. 9, 095105 (2019)

    Article  ADS  Google Scholar 

  41. H.H. Saber, S.A. AlShehri, W. Maref, Performance optimization of cascaded and non-cascaded thermoelectric devices for cooling computer chips. Energy Convers. Manag. 191, 174–192 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to thank the Institute for Energy studies, Anna University for providing technical support for the current investigation. The authors would like to mention that there is no financial grant received for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Venkatesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1

See Table 2.

Table 2 COP variation

1.2 Appendix 2

See Table 3.

Table 3 DTMax vs hot side temperature

1.3 Appendix 3

See Table 4.

Table 4 Qmax vs hot side temperature

1.4 Appendix 4

See Table 5.

Table 5 Tc (minimum) vs hot side temperature

1.5 Appendix 5

See Tables 6, 7, 8.

Table 6 Sm for ΔT = 0
Table 7 Km for ΔT = 0
Table 8 Rm for ΔT = 0

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, K., Venkataramanan, M. Experimental and Simulation Studies on Thermoelectric Cooler: A Performance Study Approach. Int J Thermophys 41, 38 (2020). https://doi.org/10.1007/s10765-020-2613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-2613-2

Keywords

Navigation