Skip to main content
Log in

Theoretical Analysis of the Cooling Performance of a Thermoelectric Element with Temperature-Dependent Material Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric (TE) cooling may play a significant role in the electronic industry in the near future due to advantages such as static cooling and environmentally friendly properties. However, temperature-dependent material properties make theoretical analysis of the cooling performance challenging. In this work, a theoretical model is proposed to predict the performance of a thermoelectric cooler considering the temperature-dependent thermal conductivity, Seebeck coefficient, and electric resistivity. The governing thermal equation of the TE element is given, in which the thermal conductivity and Seebeck coefficient are nonlinear functions of temperature T, while the electric resistivity adopts the value reached at mean temperature. The performance of the TE cooling element, such as temperature field, cooling power, and coefficient of performance (COP), etc., predicted by the proposed model agree well with the numerical and finite element result, which prove the validity of our theoretical model. The results suggest that the temperature-dependent thermal conductivity and Seebeck coefficient have the most notable influence on the heat flow and COP of the TE cooling element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.S. Lee, Energy 56, 61 (2013).

    Article  Google Scholar 

  2. G. Fraisse, M. Lazard, C. Goupil, and J.Y. Serrat, Int. J. Heat Mass Transf. 53, 3503 (2010).

    Article  Google Scholar 

  3. D.M. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano, (New York: Taylor & Francis, 2006), Chapter 1.

  4. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  5. D. Enescu and E.O. Virjoghe, Renew. Sustain. Energy Rev. 38, 903 (2014).

    Article  Google Scholar 

  6. D. Zhao and G. Tan, Appl. Therm. Eng. 66, 15 (2014).

    Article  Google Scholar 

  7. M.J. Huang, R.H. Yen, and A.B. Wang, Int. J. Heat Mass Transf. 48, 413 (2005).

    Article  Google Scholar 

  8. G. Karimi, J.R. Culham, and V. Kazerouni, Int. J. Refrig. 34, 2129 (2011).

    Article  Google Scholar 

  9. K.H. Lee and O.J. Kim, Int. J. Heat Mass Transf. 50, 1982 (2007).

    Article  Google Scholar 

  10. W. Seifert, M. Ueltzen, and E. Müller, Physica Status Solidi (A) 194, 277 (2002).

    Article  Google Scholar 

  11. M. Labudovic and J. Li, IEEE Trans. Compon. Packag. Technol. 27, 724 (2004).

    Article  Google Scholar 

  12. E.S. Jeong, Cryogenics 59, 38 (2014).

    Article  Google Scholar 

  13. Y. Zhou and J. Yu, Int. J. Refrig 35, 1139 (2012).

    Article  Google Scholar 

  14. Y. Gelbstein, J. Davidow, S.N. Girard, D.Y. Chung, and M. Kanatzidis, Adv. Energy Mater. 3, 815 (2013).

    Article  Google Scholar 

  15. O. Appel, T. Zilber, S. Kalabukhov, and Y. Gelbstein, J. Mater. Chem. C 3, 11653 (2015).

    Article  Google Scholar 

  16. Y. Gelbstein and J. Davidow, Phys. Chem. Chem. Phys. 16, 20120 (2014).

    Article  Google Scholar 

  17. A.D. LaLonde, Y. Pei, and G.J. Snyder, Energy Environ. Sci. 4, 2090 (2011).

    Article  Google Scholar 

  18. S.Y. Yang and G.S. Dui, Int. J. Solids Struct. 50, 3254 (2013).

    Article  Google Scholar 

  19. W.H. Chen, C.Y. Liao, and C.I. Hung, Appl. Energy 89, 464 (2012).

    Article  Google Scholar 

  20. G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, Energy Convers. Manag. 65, 351 (2013).

    Article  Google Scholar 

  21. M. Ibañez-Puy, J. Bermejo-Busto, C. Martín-Gómez, M. Vidaurre-Arbizu, and J.A. Sacristán-Fernández, Appl. Energy 200, 303 (2017).

    Article  Google Scholar 

  22. O. Yamashita, Appl. Energy 85, 1002 (2008).

    Article  Google Scholar 

  23. C. Ju, G. Dui, H.H. Zheng, and L. Xin, Energy 124, 249 (2017).

    Article  Google Scholar 

  24. T.H. Wang, Q.H. Wang, C. Leng, and X.D. Wang, Appl. Energy 154, 1 (2015).

    Article  Google Scholar 

  25. H. Lv, X.D. Wang, J.H. Meng, T.H. Wang, and W.M. Yan, Appl. Energy 175, 285 (2016).

    Article  Google Scholar 

  26. Y. Gao, H. Lv, X. Wang, and W. Yan, Int. J. Heat Mass Transf. 114, 656 (2017).

    Article  Google Scholar 

  27. S. Su, T. Liu, J. Wang, and J. Chen, Energy 70, 79 (2014).

    Article  Google Scholar 

  28. H.S. Kim, W. Liu, G. Chen, C.-W. Chu, and Z. Ren, Proc. Natl. Acad. Sci. 112, 8205 (2015).

    Article  Google Scholar 

  29. C. Ju, G. Dui, C.G. Uhl, L. Chu, X. Wang, and Y. Liu, J. Electron. Mater. 1, 1 (2019).

    Google Scholar 

  30. O. Appel, M. Schwall, D. Mogilyansky, M. Köhne, B. Balke, and Y. Gelbstein, J. Electron. Mater. 42, 1340 (2013).

    Article  Google Scholar 

  31. Y. Gelbstein, J. Electron. Mater. 40, 533 (2011).

    Article  Google Scholar 

  32. R. Vizel, T. Bargig, O. Beeri, and Y. Gelbstein, J. Electron. Mater. 45, 1296 (2016).

    Article  Google Scholar 

  33. T.T. Wallace, Z.H. Jin, and J. Su, J. Electron. Mater. 45, 2142 (2016).

    Article  Google Scholar 

  34. Z.H. Jin, T.T. Wallace, R.J. Lad, and J. Su, J. Electron. Mater. 43, 308 (2014).

    Article  Google Scholar 

  35. Z.H. Jin and T.T. Wallace, J. Electron. Mater. 44, 1444 (2015).

    Article  Google Scholar 

  36. K. Zabrocki, E. Müller, and W. Seifert, J. Electron. Mater. 39, 1724 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 11772041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guansuo Dui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, C., Wang, X., Dui, G. et al. Theoretical Analysis of the Cooling Performance of a Thermoelectric Element with Temperature-Dependent Material Properties. J. Electron. Mater. 48, 4627–4636 (2019). https://doi.org/10.1007/s11664-019-07217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07217-3

Keywords

Navigation