Skip to main content

Advertisement

Log in

Phonon Thermal Properties of Heterobilayers with a Molecular Dynamics Study

  • ATPC 2019
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Two-dimensional transition metal dichalcogenide materials, such as the heterobilayers by piling up the monolayers in out-of-plane direction, behave unique performances in applications of nanoelectronic components. In this work, the in-plane thermal conductivities of MoS2–MoSe2, MoS2–WS2, and MoS2–WSe2 heterobilayers are investigated with nonequilibrium molecular dynamics method by considering the effects of system dimensions, temperature, coupling strength, strain, and misorientation. The results show that the thermal conductivity decreases as the temperature rises from 100 K to 500 K. The effect of coupling strength on the thermal conductivity is not significant. Both strain and misorientation could result in a reduction in the thermal conductivity, and the effect of tensile strain is stronger than that of compressive strain. An analysis based on phonon spectral energy density is performed to further understand phonon thermal properties in heterobilayers. This work provides a fundamental basis for regulating thermal transport in two-dimensional heterobilayer-based nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Parsamehr, A. Boochani, E. Sartipi, M. Amiri, S. Solaymani, S. Naderi, A. Aminian, Int. J. Thermophys. 40, 64 (2019)

    Article  Google Scholar 

  2. Y.F. Li, G.H. Tang, B. Fu, Phys. Rev. B 99, 235428 (2019)

    Article  ADS  Google Scholar 

  3. Y. Hong, J.C. Zhang, X.C. Zeng, J. Phys. Chem. C 120, 26067 (2016)

    Article  Google Scholar 

  4. G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L.B. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F.N. Xia, Y.L. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, J.A. Robinson, ACS Nano 9, 11509 (2015)

    Article  Google Scholar 

  5. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  6. T. Shimizu, J. Haruyama, D.C. Marcano, D.V. Kosinkin, J.M. Tour, K. Hirose, K. Suenaga, Nat Nanotechnol. 6, 45 (2011)

    Article  ADS  Google Scholar 

  7. V. Sorkin, H. Pan, H. Shi, S.Y. Quek, Y.W. Zhang, Crit. Rev. Solid State Mater. Sci. 39, 319 (2014)

    Article  ADS  Google Scholar 

  8. J.C. Zhang, Y. Hong, X.Y. Wang, Y.N. Yue, D.M. Xie, J. Jiang, Y.H. Xiong, P.S. Li, J. Phys. Chem. C 121, 10336 (2017)

    Article  Google Scholar 

  9. R.S. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X.F. Wu, A. Kis, T.F. Luo, A.R. HightWalker, H.G. Xing, ACS Nano 8, 986 (2014)

    Article  Google Scholar 

  10. B. Peng, H. Zhang, H.Z. Shao, Y.C. Xu, X.C. Zhang, H.Y. Zhu, RSC Adv. 6, 5767 (2016)

    Article  Google Scholar 

  11. Y. Zhang, M.M. Ugeda, C.H. Jin, S.F. Shi, A.J. Bradley, A. Martín-Recio, H. Ryu, J. Kim, S.J. Tang, Y. Kim, B. Zhou, C. Hwang, Y.L. Chen, F. Wang, M.F. Crommie, Z. Hussain, Z.X. Shen, S.-K. Mo, Nano Lett. 16, 2485 (2016)

    Article  ADS  Google Scholar 

  12. Y.J. Gong, J.H. Lin, X.L. Wang, G. Shi, S.D. Lei, Z. Lin, X.L. Zou, G.L. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, P.M. Ajayan, Nat. Mater. 13, 1135 (2014)

    Article  ADS  Google Scholar 

  13. T.F. Ma, P. Chakraborty, X.X. Guo, L. Cao, Y. Wang, Int. J. Thermophys. 41, 9 (2020)

    Article  ADS  Google Scholar 

  14. D.O. Lindroth, P. Erhart, Phys. Rev. B 94, 115205 (2016)

    Article  ADS  Google Scholar 

  15. A. Mobaraki, A. Kandemir, H. Yapicioglu, O. Gülseren, C. Sevik, Comp. Mater. Sci. 144, 92 (2018)

    Article  Google Scholar 

  16. X.K. Gu, R.G. Yang, Appl. Phys. Lett. 105, 131903 (2014)

    Article  ADS  Google Scholar 

  17. N. Peimyoo, J.Z. Shang, W.H. Yang, Y.L. Wang, C.X. Cong, T. Yu, Nano Res. 8, 1210 (2015)

    Article  ADS  Google Scholar 

  18. P.Q. Jiang, X. Qian, X.K. Gu, R.G. Yang, Adv. Mater. 29, 1701068 (2017)

    Article  Google Scholar 

  19. B. Amin, T.P. Kaloni, G. Schreckenbach, M.S. Freund, Appl. Phys. Lett. 108, 063105 (2016)

    Article  ADS  Google Scholar 

  20. Z.N. Ma, Z.P. Hu, X.D. Zhao, Q. Tang, D.H. Wu, Z. Zhou, L.X. Zhang, J. Phys. Chem. C 118, 5593 (2014)

    Article  Google Scholar 

  21. B. Fu, K.D. Parrish, H.-Y. Kim, G.H. Tang, A.J.H. McGaughey, Phys. Rev. B 101, 045417 (2020)

    Article  ADS  Google Scholar 

  22. B. Fu, G.H. Tang, Y.F. Li, Phys. Chem. Chem. Phys. 19, 28517 (2017)

    Article  Google Scholar 

  23. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  24. A. Kandemir, H. Yapicioglu, A. Kinaci, T. Çağın, C. Sevik, Nanotech. 27, 055703 (2016)

    Article  ADS  Google Scholar 

  25. D. Han, W.Y. Ding, X.Y. Wang, L. Cheng, Nanoscale 11, 19763 (2019)

    Article  Google Scholar 

  26. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  Google Scholar 

  27. J.A. Thomas, J.E. Turney, R.M. Iutzi, C.H. Amon, A.J.H. McGaughey, Phys. Rev. B 81, 081411(R) (2010)

    Article  ADS  Google Scholar 

  28. D.P. Sellan, E.S. Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Phys. Rev. B 81, 214305 (2010)

    Article  ADS  Google Scholar 

  29. B. Liu, F.M. Meng, C.D. Reddy, J.A. Baimova, N. Srikanth, S.V. Dmitriev, K. Zhou, RSC Adv. 5, 29193 (2015)

    Article  Google Scholar 

  30. D. Han, X.Y. Wang, W.Y. Ding, Y. Chen, J.C. Zhang, G.M. Xin, L. Cheng, Nanotech. 30, 075403 (2019)

    Article  ADS  Google Scholar 

  31. K.P. Yuan, X.L. Zhang, L. Li, D.W. Tang, Phys. Chem. Chem. Phys. 21, 468 (2019)

    Article  Google Scholar 

  32. C.Y. Li, B. Debnath, X.J. Tan, S.S. Su, K. Xu, S.P. Ge, M.R. Neupane, R.K. Lake, Carbon 138, 451 (2018)

    Article  Google Scholar 

  33. S. Shallcross, S. Sharma, E. Kandelaki, O.A. Pankratov, Phys. Rev. B 81, 165105 (2010)

    Article  ADS  Google Scholar 

  34. S. Shallcross, S. Sharma, O.A. Pankratov, Phys. Rev. Lett. 101, 056803 (2008)

    Article  ADS  Google Scholar 

  35. H.Y. Li, H. Ying, X.P. Chen, D.L. Nike, A.I. Cocemasov, W.W. Cai, A.A. Balandin, S.S. Chen, Nanoscale 6, 13402 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant numbers of 51825604 and 51721004, and the 111 Project under Grant Number of B16038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Selected Papers of the 12th Asian Thermophysical Properties Conference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Tang, G.H., Li, Y.F. et al. Phonon Thermal Properties of Heterobilayers with a Molecular Dynamics Study. Int J Thermophys 41, 57 (2020). https://doi.org/10.1007/s10765-020-02627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02627-6

Keywords

Navigation