Skip to main content
Log in

First-principles Modeling of Thermal Transport in Materials: Achievements, Opportunities, and Challenges

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal transport properties have attracted extensive research attentions over the past decades. First-principles-based approaches have proved to be very useful for predicting the thermal transport properties of materials and revealing the phonon and electron scattering or propagation mechanisms in materials and devices. In this review, we provide a concise but inclusive discussion on state-of-the-art first-principles thermal modeling methods and notable achievements by these methods over the last decade. A wide range of materials are covered in this review, including two-dimensional materials, superhard materials, metamaterials, and polymers. We also cover the very recent important findings on heat transfer mechanisms informed from first principles, including phonon–electron scattering, higher-order phonon–phonon scattering, and the effect of external electric field on thermal transport. Finally, we discuss the challenges and limitations of state-of-the-art approaches and provide an outlook toward future developments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F. Sarvar, D.C. Whalley, P.P. Conway, Thermal interface materials—a review of the state of the art, in 2006 1st Electronic Systemintegration Technology Conference, 2006, vol. 2, pp. 1292–1302

  2. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)

    ADS  Google Scholar 

  3. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2002)

    ADS  Google Scholar 

  4. D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Pack. 138, 040802 (2016)

    Google Scholar 

  5. C. Dames, Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Ann. Rev. Heat. Transf. (2013). https://doi.org/10.1615/AnnualRevHeatTransfer.v16.20

    Article  Google Scholar 

  6. D.G. Cahill, K. Goodson, A. Majumdar, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 124, 223–241 (2001)

    Google Scholar 

  7. D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802–808 (1990)

    ADS  Google Scholar 

  8. P. Jiang, X. Qian, R. Yang, Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018)

    ADS  Google Scholar 

  9. Y. Wang, X. Ruan, A.K. Roy, Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces. Phys. Rev. B 85, 205311 (2012)

    ADS  Google Scholar 

  10. Z. Lu, Y. Wang, X. Ruan, Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: theory, two-temperature molecular dynamics, and thermal circuit. Phys. Rev. B 93, 064302 (2016)

    ADS  Google Scholar 

  11. J. Zhou, B. Liao, G. Chen, First-principles calculations of thermal, electrical, and thermoelectric transport properties of semiconductors. Semicond. Sci. Technol. 31, 043001 (2016)

    ADS  Google Scholar 

  12. T. Luo, G. Chen, Nanoscale heat transfer—from computation to experiment. Phys. Chem. Chem. Phys. 15, 3389–3412 (2013). https://doi.org/10.1039/c2cp43771f

    Article  Google Scholar 

  13. T. Feng, X. Ruan, Prediction of spectral phonon mean free path and thermal conductivity with applications to thermoelectrics and thermal management: a review. J. Nanomater. 2014, 25 (2014). (Art. no. 206370)

    Google Scholar 

  14. N. Mingo, D.A. Stewart, D.A. Broido, L. Lindsay, W. Li, Ab initio thermal transport, in Length-scale dependent phonon interactions, ed. by S.L. Shindé, G.P. Srivastava (Springer, New York, 2014), pp. 137–173

    Google Scholar 

  15. L. Lindsay, C. Hua, X.L. Ruan, S. Lee, Survey of ab initio phonon thermal transport. Mater. Today Phys. 7, 106–120 (2018)

    Google Scholar 

  16. Y. Wang, A.K. Vallabhaneni, B. Qiu, X. Ruan, Two-dimensional thermal transport in graphene: a review of numerical modeling studies. Nanoscale Microscale Thermophys. Eng. 18, 155–182 (2014)

    ADS  Google Scholar 

  17. A.J.H. McGaughey, A. Jain, H.-Y. Kim, B. Fu, Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J. Appl. Phys. 125, 011101 (2019)

    ADS  Google Scholar 

  18. G.P. Srivastava, The physics of phonons (Routledge, Abingdon, 2019)

    Google Scholar 

  19. J.M. Ziman, Electrons and phonons: the theory of transport phenomena in solids (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

  20. L. Lindsay, D.A. Broido, N. Mingo, Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys. Rev. B 80, 125407 (2009)

    ADS  Google Scholar 

  21. L. Lindsay, W. Li, J. Carrete, N. Mingo, D.A. Broido, T.L. Reinecke, Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. B 89, 155426 (2014)

    ADS  Google Scholar 

  22. M. Omini, A. Sparavigna, An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity. Phys. B: Condens. Matter 212, 101–112 (1995)

    ADS  Google Scholar 

  23. G. Fugallo, M. Lazzeri, L. Paulatto, F. Mauri, Ab initio variational approach for evaluating lattice thermal conductivity. Phys. Rev. B 88, 045430 (2013)

    ADS  Google Scholar 

  24. W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014)

    ADS  MATH  Google Scholar 

  25. J. Carrete, B. Vermeersch, A. Katre, A. van Roekeghem, T. Wang, G.K.H. Madsen, N. Mingo, almaBTE: a solver of the space-time dependent Boltzmann transport equation for phonons in structured materials. Comput. Phys. Commun. 220, 351–362 (2017). [in English]

    ADS  MathSciNet  MATH  Google Scholar 

  26. A. Togo, L. Chaput, I. Tanaka, Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91, 094306 (2015). [in English]

    ADS  Google Scholar 

  27. T. Tadano, Y. Gohda, S. Tsuneyuki, Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. J. Phys. Condens. Matter 26, 225402 (2014). [in English]

    Google Scholar 

  28. X.K. Gu, Z.Y. Fan, H. Bao, C.Y. Zhao, Revisiting phonon-phonon scattering in single-layer graphene. Phys. Rev. B 100, 064306 (2019). [in English]

    ADS  Google Scholar 

  29. L. Lindsay, D.A. Broido, Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys. Condens. Matter 20, 165209 (2008)

    ADS  Google Scholar 

  30. A. Ward, D.A. Broido, D.A. Stewart, G. Deinzer, Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009)

    ADS  Google Scholar 

  31. B. Fultz, Vibrational thermodynamics of materials. Prog. Mater Sci. 55, 247–352 (2010). [in English]

    Google Scholar 

  32. O. Hellman, I.A. Abrikosov, S.I. Simak, Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B 84, 180301 (2011)

    ADS  Google Scholar 

  33. O. Hellman, P. Steneteg, I.A. Abrikosov, S.I. Simak, Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B 87, 104111 (2013). [in English]

    ADS  Google Scholar 

  34. O. Hellman, I.A. Abrikosov, Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B 88, 144301 (2013). [in English]

    ADS  Google Scholar 

  35. Y. Wang, Z. Lu, X. Ruan, First principles calculation of lattice thermal conductivity of metals considering phonon-phonon and phonon-electron scattering. J. Appl. Phys. 119, 225109 (2016)

    ADS  Google Scholar 

  36. S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Kumar, T.S. Fisher, The atomistic Green’s function method for interfacial phonon transport. Ann. Rev. Heat Transf. 17, 89–145 (2014)

    Google Scholar 

  37. W. Zhang, T.S. Fisher, N. Mingo, The atomistic green’s function method: an efficient simulation approach for nanoscale phonon transport. Numer. Heat Transf. B Fundam. 51, 333–349 (2007)

    ADS  Google Scholar 

  38. C.A. Polanco, L. Lindsay, Ab initio phonon point defect scattering and thermal transport in graphene. Phys. Rev. B 97, 014303 (2018). [in English]

    ADS  Google Scholar 

  39. N.A. Katcho, J. Carrete, W. Li, N. Mingo, Effect of nitrogen and vacancy defects on the thermal conductivity of diamond: an ab initio Green’s function approach. Phys. Rev. B 90, 094117 (2014). [in English]

    ADS  Google Scholar 

  40. N. Mingo, L. Yang, Phonon transport in nanowires coated with an amorphous material: an atomistic green’s function approach. Phys. Rev. B 68, 245406 (2003)

    ADS  Google Scholar 

  41. N. Mingo, Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74, 125402 (2006)

    ADS  Google Scholar 

  42. Z. Huang, T.S. Fisher, J.Y. Murthy, Simulation of thermal conductance across dimensionally mismatched graphene interfaces. J. Appl. Phys. 108, 114310 (2010)

    ADS  Google Scholar 

  43. S. Sadasivam, N. Ye, J.P. Feser, J. Charles, K. Miao, T. Kubis, T.S. Fisher, Thermal transport across metal silicide-silicon interfaces: first-principles calculations and green’s function transport simulations. Phys. Rev. B 95, 085310 (2017)

    ADS  Google Scholar 

  44. Y. Wang, Z. Lu, A.K. Roy, X. Ruan, Effect of interlayer on interfacial thermal transport and hot electron cooling in metal-dielectric systems: an electron-phonon coupling perspective. J. Appl. Phys. 119, 065103 (2016)

    ADS  Google Scholar 

  45. R.S. Prasher, P.E. Phelan, A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance. J. Heat Transf. 123, 105–112 (2001)

    Google Scholar 

  46. L.D. Bellis, P.E. Phelan, R.S. Prasher, Variations of acoustic and diffuse mismatch models in predicting thermal-boundary resistance. J. Thermophys. Heat Transf. 14, 144–150 (2000)

    Google Scholar 

  47. M. Kazan, Interpolation between the acoustic mismatch model and the diffuse mismatch model for the interface thermal conductance: application to InN/GaN superlattice. J. Heat Transf. 133, 112401 (2011)

    Google Scholar 

  48. R. Prasher, Acoustic mismatch model for thermal contact conductance of Van Der Waals contacts under static force. Nanoscale Microscale Thermophys. Eng. 22, 1–5 (2018)

    ADS  Google Scholar 

  49. R. Prasher, Acoustic mismatch model for thermal contact resistance of van der Waals contacts. Appl. Phys. Lett. 94, 041905 (2009)

    ADS  Google Scholar 

  50. R. Bayrle, O. Weis, Acoustic mismatch model and thermal phonon radiation across a tin/sapphire interface with radiation temperatures between 1.6 and 3.7 K. J. Low Temp. Phys. 76, 129–141 (1989)

    ADS  Google Scholar 

  51. R.E. Peterson, A.C. Anderson, Acoustic-mismatch model of the Kaptiza resistance. Phys. Lett. A 40, 317–319 (1972)

    ADS  Google Scholar 

  52. W.A. Little, The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, 334–349 (1959)

    ADS  Google Scholar 

  53. E.T. Swartz, R.O. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989)

    ADS  Google Scholar 

  54. P.E. Hopkins, P.M. Norris, Relative contributions of inelastic and elastic diffuse phonon scattering to thermal boundary conductance across solid interfaces. J. Heat Transf. 131, 022402 (2009)

    Google Scholar 

  55. J. Shi, J. Lee, Y. Dong, A. Roy, T.S. Fisher, X. Ruan, Dominant phonon polarization conversion across dimensionally mismatched interfaces: carbon-nanotube–graphene junction. Phys. Rev. B 97, 134309 (2018)

    ADS  Google Scholar 

  56. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    ADS  Google Scholar 

  57. K.M.F. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152, 1331–1340 (2012)

    ADS  Google Scholar 

  58. E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)

    Google Scholar 

  59. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011)

    ADS  Google Scholar 

  60. W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan, L. Lv, H. Hou, Q. Wei, J. Yu, J. Wu, Y. Yao, S. Du, R. Sun, N. Jiang, Y. Wang, J. Kong, C. Wong, S. Maruyama, C.T. Lin, Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano. 13, 11561–11571 (2019)

    Google Scholar 

  61. J.N. Hu, Y. Wang, A. Vallabhaneni, X.L. Ruan, Y.P. Chen, Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 99, 13101 (2011)

    Google Scholar 

  62. M.-S. Cao, X.-X. Wang, W.-Q. Cao, J. Yuan, Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 3, 6589–6599 (2015). https://doi.org/10.1039/c5tc01354b

    Article  Google Scholar 

  63. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009)

    Google Scholar 

  64. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)

    ADS  Google Scholar 

  65. P. Avouris, Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010)

    ADS  Google Scholar 

  66. F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839 (2009)

    ADS  Google Scholar 

  67. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4, 611 (2010)

    ADS  Google Scholar 

  68. D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)

    Google Scholar 

  69. I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, Mechanical properties of suspended graphene sheets. J. Vacuum Sci. Technol. B 25, 2558–2561 (2007)

    ADS  Google Scholar 

  70. J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, Mechanical properties of monolayer graphene oxide. ACS Nano 4, 6557–6564 (2010)

    Google Scholar 

  71. M. Ashton, J. Paul, S.B. Sinnott, R.G. Hennig, Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101 (2017)

    ADS  Google Scholar 

  72. H. Liu, G. Qin, Y. Lin, M. Hu, Disparate strain dependent thermal conductivity of two-dimensional penta-structures. Nano Lett. 16, 3831–3842 (2016)

    ADS  Google Scholar 

  73. A. Shafique, Y.-H. Shin, Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds. Sci. Rep. 7, 506 (2017)

    ADS  Google Scholar 

  74. D. Qin, P. Yan, G. Ding, X. Ge, H. Song, G. Gao, Monolayer PdSe2: a promising two-dimensional thermoelectric material. Sci. Rep. 8, 2764 (2018)

    ADS  Google Scholar 

  75. A.N. Gandi, H.N. Alshareef, U. Schwingenschlögl, Thermoelectric performance of the MXenes M2CO2 (M = Ti, Zr, or Hf). Chem. Mater. 28, 1647–1652 (2016)

    Google Scholar 

  76. S.S. Naghavi, J. He, Y. Xia, C. Wolverton, Pd2Se3 Monolayer: a promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor. Chem. Mater. 30, 5639–5647 (2018)

    Google Scholar 

  77. J.-H. Yang, Q. Yuan, H. Deng, S.-H. Wei, B.I. Yakobson, Earth-abundant and non-toxic SiX (X = S, Se) monolayers as highly efficient thermoelectric materials. J. Phys. Chem. C 121, 123–128 (2017)

    Google Scholar 

  78. S. Sharma, U. Schwingenschlögl, Thermoelectric response in single quintuple layer Bi2Te3. ACS Energy Lett. 1, 875–879 (2016)

    Google Scholar 

  79. L.-C. Zhang, G. Qin, W.-Z. Fang, H.-J. Cui, Q.-R. Zheng, Q.-B. Yan, G. Su, Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility. Sci. Rep. 6, 19830 (2016)

    ADS  Google Scholar 

  80. M.C. Barry, Z. Yan, M. Yoon, S.R. Kalidindi, S. Kumar, Phonon transport properties of two-dimensional electride Ca2N—a first-principles study. Appl. Phys. Lett. 113, 131902 (2018)

    ADS  Google Scholar 

  81. L. Lindsay, W. Li, J. Carrete, N. Mingo, D.A. Broido, T.L. Reinecke, Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. 89, 155426 (2014)

    Google Scholar 

  82. L. Zhu, G. Zhang, B. Li, Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. 90, 214302 (2014)

    Google Scholar 

  83. S. Sharma, S. Kumar, U. Schwingenschlögl, Arsenene and antimonene: two-dimensional materials with high thermoelectric figures of merit. Phys. Rev. Appl. 8, 044013 (2017)

    ADS  Google Scholar 

  84. W. Li, Electrical transport limited by electron-phonon coupling from Boltzmann transport equation: an ab initio study of Si, Al, and MoS2. Phys. Rev. B 92, 075405 (2015)

    ADS  Google Scholar 

  85. H. Xie, T. Ouyang, É. Germaneau, G. Qin, M. Hu, H. Bao, Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Phys. Rev. B 93, 075404 (2016)

    ADS  Google Scholar 

  86. M. Zeraati, S.M. Vaez Allaei, I. Abdolhosseini Sarsari, M. Pourfath, D. Donadio, Highly anisotropic thermal conductivity of arsenene: an ab initio study. Phys. Rev. B 93, 085424 (2016)

    ADS  Google Scholar 

  87. X. Tan, H. Shao, T. Hu, G. Liu, J. Jiang, H. Jiang, High thermoelectric performance in two-dimensional graphyne sheets predicted by first-principles calculations. Phys. Chem. Chem. Phys. 17, 22872–22881 (2015)

    Google Scholar 

  88. L. Lindsay, D.A. Broido, N. Mingo, Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys. Rev. B 82, 161402 (2010)

    ADS  Google Scholar 

  89. J. Hu, X. Ruan, Y.P. Chen, Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 9, 2730–2735 (2009)

    ADS  Google Scholar 

  90. Z. Aksamija, I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011)

    ADS  Google Scholar 

  91. Y. Wang, B. Qiu, X. Ruan, Edge effect on thermal transport in graphene nanoribbons: a phonon localization mechanism beyond edge roughness scattering. Appl. Phys. Lett. 101, 013101 (2012)

    ADS  Google Scholar 

  92. B. Qiu, Y. Wang, Q. Zhao, X. Ruan, The effects of diameter and chirality on the thermal transport in free-standing and supported carbon-nanotubes. Appl. Phys. Lett. 100, 233105 (2012)

    ADS  Google Scholar 

  93. T. Feng, X. Ruan, Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons. Phys. Rev. B 97, 045202 (2018)

    ADS  Google Scholar 

  94. J. He, D. Li, Y. Ying, C. Feng, J. He, C. Zhong, H. Zhou, P. Zhou, G. Zhang, Orbitally driven giant thermal conductance associated with abnormal strain dependence in hydrogenated graphene-like borophene. NPJ Comput. Mater. 5, 47 (2019)

    ADS  Google Scholar 

  95. D.A. Broido, L. Lindsay, A. Ward, Thermal conductivity of diamond under extreme pressure: a first-principles study. Phys. Rev. B 86, 115203 (2012)

    ADS  Google Scholar 

  96. P. Chakraborty, G. Xiong, L. Cao, Y. Wang, Lattice thermal transport in superhard hexagonal diamond and wurtzite boron nitride: a comparative study with cubic diamond and cubic boron nitride. Carbon 139, 85–93 (2018)

    Google Scholar 

  97. T. Feng, X. Ruan, Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 93, 045202 (2016)

    ADS  Google Scholar 

  98. Y. Xia, Revisiting lattice thermal transport in PbTe: the crucial role of quartic anharmonicity. Appl. Phys. Lett. 113, 073901 (2018)

    ADS  Google Scholar 

  99. T. Feng, L. Lindsay, X. Ruan, Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201 (2017)

    ADS  Google Scholar 

  100. L. Lindsay, D.A. Broido, T.L. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013)

    ADS  Google Scholar 

  101. J.S. Kang, M. Li, H. Wu, H. Nguyen, Y. Hu, Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575 (2018)

    ADS  Google Scholar 

  102. S. Li, Q. Zheng, Y. Lv, X. Liu, X. Wang, P.Y. Huang, D.G. Cahill, B. Lv, High thermal conductivity in cubic boron arsenide crystals. Science 361, 579 (2018)

    ADS  Google Scholar 

  103. F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou, T.-H. Liu, M. Goni, Z. Ding, J. Sun, G.A.G. Udalamatta Gamage, H. Sun, H. Ziyaee, S. Huyan, L. Deng, J. Zhou, A.J. Schmidt, S. Chen, C.-W. Chu, P.Y. Huang, D. Broido, L. Shi, G. Chen, Z. Ren, Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582 (2018)

    ADS  Google Scholar 

  104. F. Tian, Z. Ren, High thermal conductivity in boron arsenide: from prediction to reality. Angewandte Chemie 131, 5882–5889 (2019)

    Google Scholar 

  105. A. Jain, A.J.H. McGaughey, Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles. Phys. Rev. B 93, 081206 (2016)

    ADS  Google Scholar 

  106. Z. Lin, L.V. Zhigilei, V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)

    ADS  Google Scholar 

  107. B. Liao, B. Qiu, J. Zhou, S. Huberman, K. Esfarjani, G. Chen, Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys. Rev. Lett. 114, 115901 (2015)

    ADS  Google Scholar 

  108. S.-Y. Yue, R. Yang, and B. Liao. Controlling thermal conductivity of two-dimensional materials via externally induced phonon-electron interaction. arXiv preprint arXiv:1904.11011 (2019)

  109. Z. Tong, H. Bao, Decompose the electron and phonon thermal transport of intermetallic compounds NiAl and Ni3Al by first-principles calculations. Int. J. Heat Mass Transf. 117, 972–977 (2018)

    Google Scholar 

  110. N.A. Lanzillo, J.B. Thomas, B. Watson, M. Washington, S.K. Nayak, Pressure-enabled phonon engineering in metals. Proc. Natl. Acad. Sci. 111, 8712 (2014)

    ADS  Google Scholar 

  111. S. Li, Z. Tong, H. Bao, Resolving different scattering effects on the thermal and electrical transport in doped SnSe. J. Appl. Phys. 126, 025111 (2019)

    ADS  Google Scholar 

  112. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)

    ADS  Google Scholar 

  113. A. Majumdar, P. Reddy, “Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces,” (in English). Appl. Phys. Lett. 84, 4768–4770 (2004)

    ADS  Google Scholar 

  114. Y. Wang, X.L. Ruan, A.K. Roy, Two-temperature nonequilibrium molecular dynamics simulation of thermal transport across metal-nonmetal interfaces. Physical Review B 85, 205311 (2012)

    ADS  Google Scholar 

  115. X. Li, W. Park, Y. Wang, Y.P. Chen, X. Ruan, Reducing interfacial thermal resistance between metal and dielectric materials by a metal interlayer. J. Appl. Phys. 125, 045302 (2019)

    ADS  Google Scholar 

  116. Y. Wang, X. L. Ruan. An evaluation of energy transfer pathways in thermal transport across solid/solid interfaces, in, Proceedings of the Asme summer heat transfer conference—2013, Vol 1, (2014) [in English]

  117. A.H. Zahiri, P. Chakraborty, Y. Wang, L. Cao, Strong strain hardening in ultrafast melt-quenched nanocrystalline Cu: the role of fivefold twins. J. Appl. Phys. 126, 075103 (2019)

    Google Scholar 

  118. L. Cao, A. Sengupta, D. Pantuso, M. Koslowski, Effect of texture and grain size on the residual stress of nanocrystalline thin films. Model. Simul. Mat. Sci. Eng. 25, 075004 (2017). [in English]

    ADS  Google Scholar 

  119. L. Cao, A. Hunter, I.J. Beyerlein, M. Koslowski, The role of partial mediated slip during quasi-static deformation of 3D nanocrystalline metals. J. Mech. Phys. Solids 78, 415–426 (2015). [in English]

    ADS  MathSciNet  Google Scholar 

  120. B. Baufeld, O. Van der Biest, R. Gault, Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties. Mater. Des. 31, S106–S111 (2010). [in English]

    Google Scholar 

  121. J.L. Yang, Selective laser melting additive manufacturing of advanced nuclear materials V-6Cr-6Ti. Mater. Lett. 209, 268–271 (2017). [in English]

    Google Scholar 

  122. Y.N. Cui, P. Lin, Z.L. Liu, Z. Zhuang, Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in FCC micropillars. Int. J. Plast 55, 279–292 (2014). [in English]

    Google Scholar 

  123. Y.A. Cui, G. Po, N. Ghoniem, Controlling strain bursts and avalanches at the nano- to micrometer scale. Phys. Rev. Lett. 117, 155502 (2016). [in English]

    ADS  Google Scholar 

  124. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002). [in English]

    ADS  Google Scholar 

  125. J. Zhang, L. Song, B.B. Iversen, Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment. NPJ Comput. Mater. 5, 76 (2019)

    ADS  Google Scholar 

  126. P. Chakraborty, T.F. Ma, A.H. Zahiri, L. Cao, Y. Wang, Carbon-based materials for thermoelectrics. Adv. Condens. Matter Phys. (2018). https://doi.org/10.1155/2018/3898479. [in English]

    Article  Google Scholar 

  127. S. Hao, V.P. Dravid, M.G. Kanatzidis, C. Wolverton, Computational strategies for design and discovery of nanostructured thermoelectrics. NPJ Comput. Mater. 5, 58 (2019)

    ADS  Google Scholar 

  128. G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” in Materials for sustainable energy: Co-Published with Macmillan Publishers Ltd, UK, 2010, pp. 101–110

  129. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003)

    Google Scholar 

  130. P. Chakraborty, T. Ma, A.H. Zahiri, L. Cao, Y. Wang, Carbon-based materials for thermoelectrics. Adv. Condens. Matter Phys. 2018, 29 (2018). [Art. no. 3898479]

    Google Scholar 

  131. D.A. Broido, M. Malorny, G. Birner, N. Mingo, D.A. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007)

    ADS  Google Scholar 

  132. A. Ward, D.A. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)

    ADS  Google Scholar 

  133. L. Lindsay, D.A. Broido, T.L. Reinecke, Ab initio thermal transport in compound semiconductors. Phys. Rev. B 87, 165201 (2013)

    ADS  Google Scholar 

  134. O. Hellman, D.A. Broido, Phonon thermal transport in Bi 2 Te 3 from first principles. Phys. Rev. B 90, 134309 (2014)

    ADS  Google Scholar 

  135. A. Kundu, N. Mingo, D.A. Broido, D.A. Stewart, Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011)

    ADS  Google Scholar 

  136. S. Lee, K. Esfarjani, J. Mendoza, M.S. Dresselhaus, G. Chen, Lattice thermal conductivity of Bi, Sb, and Bi-Sb alloy from first principles. Phys. Rev. B 89, 085206 (2014)

    ADS  Google Scholar 

  137. Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, G. Chen, Phonon conduction in PbSe, PbTe, and PbTe 1–x Se x from first-principles calculations. Phys. Rev. B 85, 184303 (2012)

    ADS  Google Scholar 

  138. S. Lee, K. Esfarjani, T.F. Luo, J.W. Zhou, Z.T. Tian, G. Chen, Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014). [in English]

    ADS  Google Scholar 

  139. B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J.M. Mendoza, O.D. Restrepo, X. Ruan, G. Chen, First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon. EPL 109, 57006 (2015)

    ADS  Google Scholar 

  140. Q. Song, T.-H. Liu, J. Zhou, Z. Ding, G. Chen, Ab initio study of electron mean free paths and thermoelectric properties of lead telluride. Mater. Today Phys. 2, 69–77 (2017)

    Google Scholar 

  141. R. Resta, Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899 (1994)

    ADS  Google Scholar 

  142. G. Qin, Z. Qin, S.-Y. Yue, Q.-B. Yan, M. Hu, External electric field driving the ultra-low thermal conductivity of silicene. Nanoscale 9, 7227–7234 (2017). https://doi.org/10.1039/c7nr01596h

    Article  Google Scholar 

  143. C. Liu, V. Mishra, Y. Chen, C. Dames, Large thermal conductivity switch ratio in barium titanate under electric field through first-principles calculation. Adv. Theory Simul. 1, 1800098 (2018)

    Google Scholar 

  144. C. Liu, Y. Chen, C. Dames, Electric-field-controlled thermal switch in ferroelectric materials using first-principles calculations and domain-wall engineering. Phys. Rev. Appl. 11, 044002 (2019)

    ADS  Google Scholar 

  145. S. Shen, A. Henry, J. Tong, R.T. Zheng, G. Chen, Polyethylene nanofibres with very high thermal conductivities. Nat. Nanotechnol. 5, 251–255 (2010). [in English]

    ADS  Google Scholar 

  146. X. Wang, M. Kaviany, B. Huang, Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale 9, 18022–18031 (2017). https://doi.org/10.1039/c7nr06216h

    Article  Google Scholar 

  147. N. Shulumba, O. Hellman, A.J. Minnich, Lattice thermal conductivity of polyethylene molecular crystals from first-principles including nuclear quantum effects. Phys. Rev. Lett. 119, 185901 (2017)

    ADS  Google Scholar 

  148. Y. Zhang, F. H. Shao, C. A. Yang, S. W. Xie, S. S. Huang, Y. Yuan, J. M. Shang, Y. Zhang, Y. Q. Xu, H. Q. Ni, and Z. C. Niu, Optimum growth parameters of InAs/AlSb superlattices for interband cascade lasers, in 14th National conference on laser technology and optoelectronics (Lto 2019), vol. 11170, (2019) [in English]

  149. A. Rajeev, B. Shi, Q. Li, J.D. Kirch, M. Cheng, A. Tan, H. Kim, K. Oresick, C. Sigler, K.M. Lau, T.F. Kuech, L.J. Mawst, III–V Superlattices on InP/Si metamorphic buffer layers for lambda approximate to 4.8 mu m quantum cascade lasers. Phys. Status Solidi Appl. Mater. Sci. 216, 1800493 (2019). [in English]

    Google Scholar 

  150. J.D. Kirch, H. Kim, C. Boyle, C.C. Chang, L.J. Mawst, D. Lindberg, T. Earles, D. Botez, M. Helm, J. von Borany, S. Akhmadaliev, R. Bottger, C. Reyner, Proton implantation for electrical insulation of the InGaAs/InAlAs superlattice material used in 8–15 mu m-emitting quantum cascade lasers. Appl. Phys. Lett. 110, 082102 (2017)

    ADS  Google Scholar 

  151. L. Shi, J. Jiang, G. Zhang, B. Li, High thermoelectric figure of merit in silicon-germanium superlattice structured nanowires. Appl. Phys. Lett. 101, 233114 (2012)

    ADS  Google Scholar 

  152. G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno, A. Bar-Cohen, B. Yang, Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 7, 10302 (2016)

    ADS  Google Scholar 

  153. H. Böttner, G. Chen, R. Venkatasubramanian, Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bull. 31, 211–217 (2006)

    Google Scholar 

  154. G. Wang, T. Cagin, Electronic structure of the thermoelectric materials Bi 2 Te 3 and Sb 2 Te 3 from first-principles calculations. Phys. Rev. B 76, 075201 (2007)

    ADS  Google Scholar 

  155. P. Chakraborty, L. Cao, Y. Wang, Ultralow lattice thermal conductivity of the random multilayer structure with lattice imperfections. Sci Rep 7, 8134 (2017)

    ADS  Google Scholar 

  156. Y. Wang, C.J. Gu, X.L. Ruan, Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity. Appl. Phys. Lett. 106, 73104 (2015). [in English]

    Google Scholar 

  157. Y. Wang, H. Huang, X. Ruan, Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers. Phys. Rev. B 90, 165406 (2014)

    ADS  Google Scholar 

  158. J. Garg, N. Bonini, N. Marzari, High thermal conductivity in short-period superlattices. Nano Lett. 11, 5135–5141 (2011)

    ADS  Google Scholar 

  159. Y. Chen, D. Li, J.R. Lukes, Z. Ni, M. Chen, Minimum superlattice thermal conductivity from molecular dynamics. Phys. Rev. B 72, 174302 (2005)

    ADS  Google Scholar 

  160. P. Hyldgaard, G.D. Mahan, Phonon superlattice transport. Phys. Rev. B 56, 10754–10757 (1997)

    ADS  Google Scholar 

  161. S.-I. Tamura, Y. Tanaka, H.J. Maris, Phonon group velocity and thermal conduction in superlattices. Phys. Rev. B 60, 2627–2630 (1999)

    ADS  Google Scholar 

  162. J. Garg, G. Chen, Minimum thermal conductivity in superlattices: a first-principles formalism. Phys. Rev. B 87, 140302 (2013)

    ADS  Google Scholar 

  163. R. Venkatasubramanian, Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091–3097 (2000). [in English]

    ADS  Google Scholar 

  164. B.C. Daly, H.J. Maris, K. Imamura, S. Tamura, Molecular dynamics calculation of the thermal conductivity of superlattices. Phys. Rev. B 66, 024301 (2002). [in English]

    ADS  Google Scholar 

  165. J. Ravichandran, A.K. Yadav, R. Cheaito, P.B. Rossen, A. Soukiassian, S.J. Suresha, J.C. Duda, B.M. Foley, C.-H. Lee, Y. Zhu, A.W. Lichtenberger, J.E. Moore, D.A. Muller, D.G. Schlom, P.E. Hopkins, A. Majumdar, R. Ramesh, M.A. Zurbuchen, Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168 (2013)

    ADS  Google Scholar 

  166. J. Carrete, B. Vermeersch, L. Thumfart, R.R. Kakodkar, G. Trevisi, P. Frigeri, L. Seravalli, J.P. Feser, A. Rastelli, N. Mingo, Predictive design and experimental realization of InAs/GaAs superlattices with tailored thermal conductivity. J. Phys. Chem. C 122, 4054–4062 (2018). [in English]

    Google Scholar 

  167. Z. Tian, K. Esfarjani, G. Chen, Green’s function studies of phonon transport across Si/Ge superlattices. Phys. Rev. B 89, 235307 (2014)

    ADS  Google Scholar 

  168. Z. Tian, K. Esfarjani, G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: first-principles study with the Green’s function method. Phys. Rev. B 86, 235304 (2012)

    ADS  Google Scholar 

  169. B. Qiu, G. Chen, Z. Tian, Effects of aperiodicity and roughness on coherent heat conduction in superlattices. Nanoscale Microscale Thermophys. Eng. 19, 272–278 (2015)

    ADS  Google Scholar 

  170. J. Mendoza, G. Chen, Anderson localization of thermal phonons leads to a thermal conductivity maximum. Nano Lett. 16, 7616–7620 (2016)

    ADS  Google Scholar 

  171. M. Campbell, A.J. Hoane, F.-H. Hsu, Deep blue. Artif Intell 134, 57–83 (2002)

    MATH  Google Scholar 

  172. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of Go with deep neural networks and tree search. Nature 529, 484 (2016)

    ADS  Google Scholar 

  173. J. Carrete, W. Li, N. Mingo, S. Wang, S. Curtarolo, Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014)

    Google Scholar 

  174. A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, I. Tanaka, Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization. Phys. Rev. Lett. 115, 205901 (2015)

    ADS  Google Scholar 

  175. H. Yang, Z. Zhang, J. Zhang, X.C. Zeng, Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. Nanoscale 10, 19092–19099 (2018). https://doi.org/10.1039/c8nr05703f

    Article  Google Scholar 

  176. Y.-J. Wu, L. Fang, Y. Xu, Predicting interfacial thermal resistance by machine learning. NPJ Comput. Mater. 5, 56 (2019)

    ADS  Google Scholar 

  177. P. Chakraborty, Y. Liu, T. Ma, X. Guo, L. Cao, R. Hu, Y. Wang, Quenching thermal transport in aperiodic superlattices: a molecular dynamics and machine learning study. ACS Appl. Mater. Interfaces (2020, under review)

  178. A. Jain, A.J.H. McGaughey, Effect of exchange-correlation on first-principles-driven lattice thermal conductivity predictions of crystalline silicon. Comput. Mater. Sci. 110, 115–120 (2015). [in English]

    Google Scholar 

  179. G. Qin, M. Hu, Accelerating evaluation of converged lattice thermal conductivity. NPJ Comput. Mater. 4, 3 (2018)

    ADS  Google Scholar 

  180. H. Xie, X. Gu, H. Bao, Effect of the accuracy of interatomic force constants on the prediction of lattice thermal conductivity. Comput. Mater. Sci. 138, 368–376 (2017)

    Google Scholar 

  181. N. Bonini, J. Garg, N. Marzari, Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 12, 2673–2678 (2012). [in English]

    ADS  Google Scholar 

  182. Y. Wang, A. Vallabhaneni, J.N. Hu, B. Qiu, Y.P. Chen, X.L. Ruan, Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Lett. 14, 592–596 (2014)

    ADS  Google Scholar 

  183. Y. Wang, B. Qiu, X.L. Ruan, Edge effect on thermal transport in graphene nanoribbons: A phonon localization mechanism beyond edge roughness scattering. Phys. Rev. Lett. 101, 013101 (2012)

    Google Scholar 

  184. Y. Wang, S.Y. Chen, X.L. Ruan, Tunable thermal rectification in graphene nanoribbons through defect engineering: a molecular dynamics study. Appl. Phys. Lett. 100, 163101 (2012)

    ADS  Google Scholar 

  185. N. de Koker, Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics. Phys. Rev. Lett. 103, 125902 (2009)

    ADS  Google Scholar 

  186. M. Puligheddu, F. Gygi, G. Galli, First-principles simulations of heat transport. Phys. Rev. Mater. 1, 060802 (2017)

    Google Scholar 

  187. A. Bouzid, H. Zaoui, P. Luca Palla, G. Ori, M. Boero, C. Massobrio, F. Cleri, E. Lampin, Thermal conductivity of glassy GeTe4 by first-principles molecular dynamics. Phys. Chem. Chem. Phys. 19, 9729–9732 (2017). https://doi.org/10.1039/c7cp01063j

    Article  Google Scholar 

  188. J.S. Tse, N.J. English, K. Yin, T. Iitaka, Thermal conductivity of solids from first-principles molecular dynamics calculations. J. Phys. Chem. C 122, 10682–10690 (2018)

    Google Scholar 

  189. H. Man, Z. Shi, G. Xu, Y. Xu, X. Chen, S. Sullivan, J. Zhou, K. Xia, J. Shi, P. Dai, Direct observation of magnon-phonon coupling in yttrium iron garnet. Phys. Rev. B 96, 100406 (2017)

    ADS  Google Scholar 

  190. J. Holanda, D.S. Maior, A. Azevedo, S.M. Rezende, Detecting the phonon spin in magnon–phonon conversion experiments. Nat. Phys. 14, 500–506 (2018)

    Google Scholar 

  191. C. Berk, M. Jaris, W. Yang, S. Dhuey, S. Cabrini, H. Schmidt, Strongly coupled magnon–phonon dynamics in a single nanomagnet. Nat. Commun. 10, 2652 (2019)

    ADS  Google Scholar 

  192. X. Wu, Z. Liu, T. Luo, Magnon and phonon dispersion, lifetime, and thermal conductivity of iron from spin-lattice dynamics simulations. J. Appl. Phys. 123, 085109 (2018)

    ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank LC’s and YW’s faculty startup funds from the University of Nevada, Reno. Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund (60587-DNI10) for partial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Chakraborty, P., Guo, X. et al. First-principles Modeling of Thermal Transport in Materials: Achievements, Opportunities, and Challenges. Int J Thermophys 41, 9 (2020). https://doi.org/10.1007/s10765-019-2583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2583-4

Keywords

Navigation