Skip to main content

Advertisement

Log in

Performance Analysis of a Metamaterial-Based Near-Field Thermophotovoltaic System Considering Cooling System Energy Consumption

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A mathematical physical model of a near-field thermophotovoltaic (TPV) system containing a metamaterial emitter comprised of W-nanowire arrays embedded in a SiC host is constructed. It is notable that this model incorporates a cooling system. On this basis, the influence of the emitter temperature and filling ratio, the cell and emitter thicknesses, and the emitter cell vacuum gap on the TPV system output performance is analyzed. It is found that the cooling device energy consumption increases by two orders of magnitude with decreased emitter cell gap size in the near-field; the highest possible value is 267.74 W·cm−2. However, the maximum net system efficiency is only 11.79 %. The emitter radiation capability can be enhanced by increasing the emitter temperature, but the cooling system energy consumption remains a significant problem. When the emitter temperature increases to 2200 K, the net system efficiency and net output density reach maximum values of only 6.22 % and 36.28 W·cm−2, respectively. Further investigation demonstrates that a large emitter thickness can induce a surface disturbance phenomenon, resulting in rapid decreases in the net system output power density and net system efficiency to − 251.85 W·cm−2 and − 12.86 %, respectively. However, when the cell thickness increases beyond 1000 nm, the net system efficiency and output power density are stable at 2.13 % and 24.12 W·cm−2, respectively. Finally, the emitter filling ratio should be increased as much as possible to maintain good system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Molesky, C.J. Dewalt, Z. Jacob, High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express 21, A1035–A1051 (2013)

    Article  Google Scholar 

  2. H. Deng, T. Wang, J. Gao, X. Yang, Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics. J. Opt. 16, 35102 (2014)

    Article  Google Scholar 

  3. J.-Y. Chang, Y. Yang, L. Wang, Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications. Int. J. Heat Mass Transf. 87, 237–247 (2015)

    Article  Google Scholar 

  4. K. Qiu, A.C.S. Hayden, Thermophotovoltaic power generation systems using natural gas-fired radiant burners. Sol. Energy Mater. Sol. Cells 91, 588–596 (2007)

    Article  Google Scholar 

  5. K. Qiu, A.C.S. Hayden, Development of a novel cascading TPV and TE power generation system. Appl. Energy 91, 304–308 (2012)

    Article  Google Scholar 

  6. T.A. Butcher, J.S. Hammonds, E. Horne, B. Kamath, J. Carpenter, D.R. Woods, Heat transfer and thermophotovoltaic power generation in oil-fired heating systems. Appl. Energy 88, 1543–1548 (2011)

    Article  Google Scholar 

  7. E. Shoaei, Performance assessment of thermophotovoltaic application in steel industry. Sol. Energy Mater. Sol. Cells 157, 55–64 (2016)

    Article  Google Scholar 

  8. X. Wu, H. Ye, J. Wang, Experimental analysis of cell output performance for a TPV system. Sol. Energy Mater. Sol. Cells 95, 2459–2465 (2011)

    Article  Google Scholar 

  9. W. Durisch, B. Bitnar, J.-C. Mayor, F. von Roth, H. Sigg, H.R. Tschudi et al., Small self-powered grid-connected thermophotovoltaic prototype system. Appl. Energy 74, 149–157 (2003)

    Article  Google Scholar 

  10. X. Xu, H. Ye, Y. Xu, M. Shen, X. Zhang, X. Wu, Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system. Appl. Energy 113, 924–931 (2014)

    Article  Google Scholar 

  11. M. Francoeur, R. Vaillon, M.P. Mengüç, Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Trans. Energy Convers. 26, 686–698 (2011)

    Article  ADS  Google Scholar 

  12. S. Basu, Z.M. Zhang, C.J. Fu, Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 33, 1203–1232 (2009)

    Article  Google Scholar 

  13. M. Francoeur, M.P. Mengüç, R. Vaillon, Spectral tuning of near-field radiative heat flux between two thin silicon carbide films. J. Phys. Appl. Phys. 43, 75501 (2010)

    Article  Google Scholar 

  14. K. Park, S. Basu, W.P. King, Z.M. Zhang, Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. J. Quant. Spectrosc. Radiat. Transf. 109, 305–316 (2008)

    Article  ADS  Google Scholar 

  15. A.W. Bett, S. Keser, O.V. Sulima, Study of Zn diffusion into GaSb from the vapour and liquid phase. J. Cryst. Growth 181, 9–16 (1997)

    Article  ADS  Google Scholar 

  16. P.S. Dutta, B. Méndez, J. Piqueras, E. Dieguez, H.L. Bhat, Nature of compensating luminescence centers in Te-diffused and -doped GaSb. J. Appl. Phys. 80, 1112–1115 (1996)

    Article  ADS  Google Scholar 

  17. J.A. González-Cuevas, T.F. Refaat, M.N. Abedin, H.E. Elsayed-Ali, Modeling of the temperature-dependent spectral response of In1−χGaχSb infrared photodetectors. Opt. Eng. 45, 44001–0440018 (2006)

    Article  Google Scholar 

  18. J. Yang, K.T. Chan, X. Wu, F.W. Yu, X. Yang, An analysis on the energy efficiency of air-cooled chillers with water mist system. Energy Build. 55, 273–284 (2012)

    Article  Google Scholar 

  19. B. Song, A. Fiorino, E. Meyhofer, P. Reddy, Near-field radiative thermal transport: from theory to experiment. AIP Adv. 5, 053503 (2015)

    Article  ADS  Google Scholar 

  20. J.K. Tong, W.-C. Hsu, Y. Huang, S.V. Boriskina, G. Chen, Thin-film “thermal well” emitters and absorbers for high-efficiency thermophotovoltaics. Sci. Rep. 5, 10661 (2015)

    Article  ADS  Google Scholar 

  21. M.P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, M. Francoeur, Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Sci. Rep. 5, 11626 (2015)

    Article  ADS  Google Scholar 

  22. H. Daneshvar, R. Prinja, N.P. Kherani, Thermophotovoltaics: fundamentals, challenges and prospects. Appl. Energy 159, 560–575 (2015)

    Article  Google Scholar 

  23. X.L. Liu, R.Z. Zhang, Z.M. Zhang, Near-field thermal radiation between hyperbolic metamaterials: graphite and carbon nanotubes. Appl. Phys. Lett. 103, 213102 (2013)

    Article  ADS  Google Scholar 

  24. S. Basu, Y. Yang, L. Wang, Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films. Appl. Phys. Lett. 106, 033106 (2015)

    Article  ADS  Google Scholar 

  25. X.J. Wang, S. Basu, Z.M. Zhang, Parametric optimization of dielectric functions for maximizing nanoscale radiative transfer. J. Phys. Appl. Phys. 42, 245403 (2009)

    Article  ADS  Google Scholar 

  26. O. Ilic, M. Jablan, J.D. Joannopoulos, I. Celanovic, M. Soljačić, Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Opt. Express 20, A366 (2012)

    Article  ADS  Google Scholar 

  27. S.-A. Biehs, P. Ben-Abdallah, F.S.S. Rosa, K. Joulain, J.-J. Greffet, Nanoscale heat flux between nanoporous materials. Opt. Express 19, A1088 (2011)

    Article  Google Scholar 

  28. S.-A. Biehs, Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials. Eur. Phys. J. B 58, 423–431 (2007)

    Article  ADS  Google Scholar 

  29. Y. Yang, S. Basu, L. Wang, Vacuum thermal switch made of phase transition materials considering thin film and substrate effects. J. Quant. Spectrosc. Radiat. Transf. 158, 69–77 (2015)

    Article  ADS  Google Scholar 

  30. Y. Yang, L. Wang, Electrically-controlled near-field radiative thermal modulator made of graphene-coated silicon carbide plates. J. Quant. Spectrosc. Radiat. Transf. 197, 68–75 (2017)

    Article  ADS  Google Scholar 

  31. S. Basu, L. Wang, Near-field radiative heat transfer between doped silicon nanowire arrays. Appl. Phys. Lett. 102, 053101 (2013)

    Article  ADS  Google Scholar 

  32. S.-A. Biehs, M. Tschikin, P. Ben-Abdallah, Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109, 104301 (2012)

    Article  ADS  Google Scholar 

  33. H. Wang, X. Liu, L. Wang, Z. Zhang, Anisotropic optical properties of silicon nanowire arrays based on the effective medium approximation. Int. J. Therm. Sci. 65, 62–69 (2013)

    Article  Google Scholar 

  34. S. Basu, M. Francoeur, Penetration depth in near-field radiative heat transfer between metamaterials. Appl. Phys. Lett. 99, 143107 (2011)

    Article  ADS  Google Scholar 

  35. Y. Yang, L. Wang, Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps. Phys. Rev. Lett. 117, 044301 (2016)

    Article  ADS  Google Scholar 

  36. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Cambridge, 1998)

    Google Scholar 

  37. O.V. Sulima, A.W. Bett, Fabrication and simulation of GaSb thermophotovoltaic cells. Sol. Energy Mater. Sol. Cells 66, 533–540 (2001)

    Article  Google Scholar 

  38. D. Martín, C. Algora, Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling. Semicond. Sci. Technol. 19, 1040 (2004)

    Article  ADS  Google Scholar 

  39. H. Ye, L. Tang, Y. Ma, Experimental and theoretical investigation of zinc diffusion in N-GaSb. Chin. Sci. Bull. 55, 2489–2496 (2010)

    Article  Google Scholar 

  40. P.S. Dutta, B. Méndez, J. Piqueras, E. Dieguez, H.L. Bhat, Nature of compensating luminescence centers in Te-diffused and -doped GaSb. J. Appl. Phys. 80, 1112–1115 (1996)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51406126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Wu or Qilin Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Calculation method of energy transmission coefficient \( \xi (\omega ,\beta ) \) was reported in papers [3, 13, 23,24,25,26,27,28,29,30]. In particular, papers [3, 13, 24, 28,29,30] have described the calculation method of energy transmission coefficient of multilayer planar structure. A calculation method of energy transmission coefficient between two suspended metamaterial films was reported in papers [23, 27, 31], at the same time. Because in this work, we have studied a five-layer parallel-plate near-field thermophotovoltaic system, combining all the literature above with each other; the expression of energy transmission coefficient \( \xi (\omega ,\beta ) \) between metamaterial emitter and thermophotovoltaic cell for both propagating waves (\( \kappa < \omega /c \)) and evanescent waves (\( \kappa > \omega /c \)) can be expressed as:

$$ \xi (\omega ,\beta ) = \left\{ {\begin{array}{*{20}l} {\frac{{\left( {1 - \left| {R_{2}^{s} } \right|^{2} - \left| {T_{2}^{s} } \right|^{2} } \right)\left( {1 - \left| {R_{4}^{s} } \right|^{2} - \left| {T_{4}^{s} } \right|^{2} } \right)}}{{\left| {1 - R_{2}^{s} R_{4}^{s} e^{{2i\gamma_{3} d}} } \right|^{2} }} + \frac{{\left( {1 - \left| {R_{2}^{p} } \right|^{2} - \left| {T_{2}^{p} } \right|^{2} } \right)\left( {1 - \left| {R_{4}^{p} } \right|^{2} - \left| {T_{4}^{p} } \right|^{2} } \right)}}{{\left| {1 - R_{2}^{p} R_{4}^{p} e^{{2i\gamma_{3} d}} } \right|^{2} }},} \hfill & {\quad \kappa < \omega /c} \hfill \\ {\frac{{4IM(R_{2}^{s} )IM(R_{4}^{s} )e^{{ - 2\text{Im} (\gamma_{3} )d}} }}{{\left| {1 - R_{2}^{s} R_{4}^{s} e^{{2i\gamma_{3} d}} } \right|^{2} }} + \frac{{4IM(R_{2}^{p} )IM(R_{4}^{p} )e^{{ - 2\text{Im} (\gamma_{3} )d}} }}{{\left| {1 - R_{2}^{p} R_{4}^{p} e^{{2i\gamma_{3} d}} } \right|^{2} }},} \hfill & {\quad \kappa > \omega /c} \hfill \\ \end{array} } \right. $$
(13)

Where reflection coefficients R and transmission coefficients T are given by:

$$ R_{l}^{\nu } = \frac{{r_{l - 1,l}^{\nu } + r_{l,l + 1}^{\nu } e^{{2i\gamma_{l} t_{l} }} }}{{1 + r_{l - 1,l}^{\nu } + r_{l,l + 1}^{\nu } e^{{2i\gamma_{l} t_{l} }} }} $$
(14)
$$ T_{l}^{\nu } = \frac{{t_{l - 1,l}^{\nu } + t_{l,l + 1}^{\nu } e^{{i\gamma_{l} t_{l} }} }}{{1 + r_{l - 1,l}^{\nu } + r_{l,l + 1}^{\nu } e^{{2i\gamma_{l} t_{l} }} }} $$
(15)

Where the subscript number l = 1, 2, 3, 4 or 5 is the layer index shown in Fig. 1a in the main text; ν = s or p represents the polarization states; γ is the vertical-component wavevector, \( \beta \) is the parallel-component wavevector. According to paper [29], if the layer 5 is not a vacuum, the energy associated with propagating waves will be absorbed when it cannot transmit into the vacuum substrate. In this case, \( \left( {1 - \left| {R_{l}^{\nu } } \right|^{2} - \left| {T_{l}^{\nu } } \right|^{2} } \right) \) will be replaced by \( \left( {1 - \left| {R_{l}^{\nu } } \right|^{2} } \right) \) in Eq. 13; \( r_{l - 1 ,l}^{\text{s}} \) and \( r_{l - 1 ,l}^{\text{p}} \) are the Fresnel reflection coefficients for s and p polarizations at the interface of layers l − 1 and l, which can be written as \( r_{l - 1,l}^{s} = (\gamma_{l - 1} - \gamma_{l} )/(\gamma_{l - 1} + \gamma_{l} ) \) and \( r_{l - 1,l}^{p} = (\varepsilon_{l\parallel } \gamma_{l - 1} - \varepsilon_{l - 1,\parallel } \gamma_{l} )/(\varepsilon_{l\parallel } \gamma_{l - 1} + \varepsilon_{l - 1,\parallel } \gamma_{l} ) \) [3, 27, 31], respectively; the metamaterial emitter in this work is an inhomogeneous medium made of tungsten and SiC. When it comes to the calculation of the reflection coefficient of layer 2, \( R_{2}^{\nu } \), the wavelength-dependent dielectric function for the metamaterial emitter is needed, so that according to papers [2, 3, 32, 33], effective medium theory (EMT) is employed here to obtain effective dielectric functions of the emitter by approximating it as a homogeneous medium. In this work, Maxwell–Garnett method (MGM) is applied, which can be expressed as:

$$ \varepsilon_{{\parallel ,{\text{eff}}}} = \varepsilon_{\text{d}} \frac{{(f + 1)\varepsilon_{\text{m}} + (1 - f)\varepsilon_{\text{d}} }}{{(1 - f)\varepsilon_{\text{m}} + (f + 1)\varepsilon_{\text{d}} }} $$
(16)

and

$$ \varepsilon_{{ \bot ,{\text{eff}}}} = f\varepsilon_{\text{m}} + (1 - f)\varepsilon_{\text{d}} $$
(17)

With the literature research, we know that the permittivity of material can be well described by Drude model and Lorentz model [2, 24, 25, 34, 35], so that in this work, we employed the Drude model to describe the wavelength-dependent dielectric function of tungsten \( \varepsilon_{\text{d}} (\omega ) \) as:

$$ \varepsilon_{\text{d}} (\omega ) = \varepsilon_{\infty } + \frac{{\omega_{\text{p}}^{2} }}{{\omega_{0}^{2} - i\omega \gamma - \omega^{2} }} $$
(18)

The parameters needed for calculation are obtained from Ref. [36].

However, because SiC is polar material, wavelength-dependent dielectric function \( \varepsilon_{\text{m}} (\omega ) \) is more suitable to describe in Lorentz model [25]:

$$ \varepsilon_{\text{m}} (\omega ) = \varepsilon_{\infty } - \frac{{\omega_{\text{p}}^{2} }}{\omega (\omega + i\gamma )} $$
(19)

The parameters needed for calculation are obtained from Ref. [25].

In this work, we have also employed an accurate model for the calculation of dark current in this work as follows.

Refer to Ref. [14], the dark current can be calculated by:

$$ J_{0} = e\left( {\frac{{n_{\text{in}}^{2} D_{\text{h}} }}{{N_{\text{D}} \sqrt {\tau_{\text{h}} } }} + \frac{{n_{\text{in}}^{2} D_{\text{e}} }}{{N_{\text{A}} \sqrt {\tau_{\text{e}} } }}} \right) $$
(20)

When the temperature of cell is 300 K, the intrinsic carrier concentration \( n_{\text{in}}^{{}} \) is 1.4 × 1012 cm−3 [37]; \( \tau_{\text{e}} \), \( \tau_{\text{h}} \) are the relaxation time of electron and hole, respectively; diffusion coefficient \( D_{\text{h}} \) and \( D_{\text{e}} \) can be calculated by Einstein’s relation: \( D_{n} = \left( {\frac{kT}{q}} \right)\mu_{n} \) [17], where \( \mu_{n} \) is carrier mobility [38] and mobility of electron and hole can be, respectively, calculated by:

$$ \mu_{\text{e}} = \mu_{{\hbox{min} ,{\text{e}}}} + \frac{{\mu_{{\hbox{max} ,{\text{e}}}} \left( {\frac{300}{T}} \right)^{{\theta_{{1,{\text{e}}}} }} - \mu_{{\hbox{min} ,{\text{e}}}} }}{{1 + \left( {\frac{{N_{\text{e}} }}{{N_{{{\text{ref}},{\text{e}}}} \left( {\frac{T}{300}} \right)^{{\theta_{{2,{\text{e}}}} }} }}} \right)^{{\alpha_{\text{e}} }} }} $$
(21)
$$ \mu_{\text{h}} = \mu_{\text{min,h}} + \frac{{\mu_{\text{max,h}} \left( {\frac{300}{T}} \right)^{{\theta_{{ 1 , {\text{h}}}} }} - \mu_{\text{min,h}} }}{{1 + \left( {\frac{{N_{\text{h}} }}{{N_{\text{ref,h}} \left( {\frac{T}{300}} \right)^{{\theta_{{ 2 , {\text{h}}}} }} }}} \right)^{{\alpha_{h} }} }} $$
(22)

The parameters needed for calculation are obtained from Ref. [15, 39, 40].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Chen, P., Wu, X. et al. Performance Analysis of a Metamaterial-Based Near-Field Thermophotovoltaic System Considering Cooling System Energy Consumption. Int J Thermophys 40, 30 (2019). https://doi.org/10.1007/s10765-019-2496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2496-2

Keywords

Navigation