Skip to main content

Advertisement

Log in

Thermal Degradation of Tungsten Nanowire-Based Hyperbolic Metamaterial Emitters for Near-Field Thermophotovoltaic Applications

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A nanowire-based hyperbolic metamaterial emitter is widely used in a near-field thermophotovoltaic system. However, it is generally hypothesized that the emitter is stable enough to be less subject to the thermal degradation. To make an improvement, the thermal degradation of a W-Al2O3 metamaterial emitter was investigated. On this basis, an improved energy transfer model of the near-field thermophotovoltaic system with the thermal degradation was constructed, and the effects of the heating time, emitter temperature and partial pressure of the oxygen on the emitter and system performances were analyzed. The results show that the thermal degradation in the emitter is mainly caused by the oxidation of the metal W. The produced WO3 is volatile at a high temperature, leading to the reduction of the W nanowire diameter. The diameter reduction rate decreases from 6.67 nm·h−1 to 0.04 nm·h−1 by changing the emitter temperature and partial pressure of the oxygen. It is noted that the increasing temperature has the dual effects on the spectral efficiency. On one hand, it can make the oxygen atoms diffuse more easily, resulting in the increase in the oxidation rate and leading to the decrease in the spectral efficiency. On the other hand, the increasing temperature is beneficial for the spectral efficiency of the emitter according to the Wien's displacement law. Compared to the system without the oxidation, there exhibits a reduction rate of the spectral efficiency up to 13.47 % for the system involving the oxidation, meaning that the system efficiency without the oxidation is seriously overestimated. Therefore, to promote the development of the near-field TPV system applications, the prevention of the thermal degradation is a key point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that supports the finding of this study are available from the corresponding author upon reasonable request.

References

  1. M. Mehrpooya, R. Khodayari, S.A. Moosavian, A. Dadak, Energy Convers. Manage. 221, 113177 (2020)

    Article  Google Scholar 

  2. P. Qian, M. Liu, X. Li, F. Xie, Z. Huang, C. Luo, X. Zhu, Appl. Therm. Eng. 174, 115281 (2020)

    Article  Google Scholar 

  3. T. Liao, X. Zhang, X. Chen, J. Chen, J. Appl. Phys. 125, 203103 (2019)

    Article  ADS  Google Scholar 

  4. Y. Taniguchi, K. Isobe, K. Hanamura, Appl. Therm. Eng. 183, 116041 (2021)

    Article  Google Scholar 

  5. A. Fiorino, L. Zhu, D. Thompson, R. Mittapally, P. Reddy, E. Meyhofer, Nat. Nanotechnol. 13, 806 (2018)

    Article  ADS  Google Scholar 

  6. Y. Yang, J.-Y. Chang, L. Wang, J. Quant. Spectrosc. Radiat. Transf. 184, 58–67 (2016)

    Article  ADS  Google Scholar 

  7. H. Ye, H. Wang, Q. Cai, J. Quant. Spectrosc. Radiat. Transf. 158, 119 (2015)

    Article  ADS  Google Scholar 

  8. S. Sharifi, Y.M. Banadaki, V.F. Nezhad, G. Veronis, J.P. Dowling, J. Appl. Phys. 124, 233101 (2018)

    Article  ADS  Google Scholar 

  9. M. Lim, S.S. Lee, B.J. Lee, J. Quant. Spectrosc. Radiat. Transf. 197, 84 (2017)

    Article  ADS  Google Scholar 

  10. K. Isobe, D. Hirashima, K. Hanamura, Int. J. Heat Mass Transf. 115, 467 (2017)

    Article  Google Scholar 

  11. Y. Tian, A. Ghanekar, M. Ricci, M. Hyde, O. Gregory, Y. Zheng, Materials 11, 862 (2018)

    Article  ADS  Google Scholar 

  12. R. Sakakibara, V. Stelmakh, W.R. Chan, M. Ghebrebrhan, J.D. Joannopoulos, M. Soljacic, I. Čelanović, J. Photonics Energy 9, 032713 (2019)

    Article  ADS  Google Scholar 

  13. G. Silva-Oelker, C. Jerez-Hanckes, P. Fay, J. Quant. Spectrosc. Radiat. Transf. 231, 66 (2019)

    Article  ADS  Google Scholar 

  14. A. Licht, N. Pfiester, D. DeMeo, J. Chivers, T.E. Vandervelde, MRS Adv. 4, 2271 (2019)

    Article  Google Scholar 

  15. M. Shimizu, A. Kohiyama, H. Yugami, J. Quant. Spectrosc. Radiat. Transf. 212, 45 (2018)

    Article  ADS  Google Scholar 

  16. Z. Jurado, J. Kou, S.M. Kamali, A. Faraon, A.J. Minnich, J. Appl. Phys. 124, 183105 (2018)

    Article  ADS  Google Scholar 

  17. M. Chirumamilla, G.V. Krishnamurthy, K. Knopp, T. Krekeler, M. Graf, D. Jalas, M. Ritter, M. Störmer, A.Y. Petrov, M. Eich, Sci. Rep. 9, 7241 (2019)

    Article  ADS  Google Scholar 

  18. J.H. Kim, S.M. Jung, M.W. Shin, Opt. Express 27, 3039 (2019)

    Article  ADS  Google Scholar 

  19. P.N. Dyachenko, S. Molesky, A.Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, M. Eich, Nat. Commun. 7, 11809 (2016)

    Article  ADS  Google Scholar 

  20. A. Kohiyama, M. Shimizu, F. Iguchi, H. Yugami, J. Appl. Phys. 118, 431 (2015)

    Article  Google Scholar 

  21. B. Li, Q. Cheng, J. Song, K. Zhou, Z. Luo, J. Appl. Phys. 127, 063103 (2020)

    Article  ADS  Google Scholar 

  22. H.J. Lee, (Massachusetts Institute of Technology, 2012)

  23. S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, J. Mater. Sci.: Mater. Electron. 28, 14855 (2017)

    Google Scholar 

  24. S. Hoseinzadeh, A. Ramezani, J. Nanoelectron. Optoelectron. 14, 1413 (2019)

    Article  Google Scholar 

  25. S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, J. Electron. Mater. 28, 14855 (2018)

    Article  Google Scholar 

  26. D. Kostomarov, K.S. Bagdasarov, E. Antonov, Russ. J. Inorg. Chem. 57, 1405 (2012)

    Article  Google Scholar 

  27. W.W. Webb, J.T. Norton, C. Wagner, J. Electrochem. Soc. 103, 107 (1956)

    Article  Google Scholar 

  28. A. Ramezani, S. Hoseinzadeh, Z. Ebrahiminejad, S. Masoudi, A. Hashemizadeh, J. Supercond. Novel Magn. 33, 1513 (2020)

    Article  Google Scholar 

  29. S. Hoseinzadeh, A.H. Ramezani, J. Nanostruct. 9, 276 (2019)

    Google Scholar 

  30. J.Y. Chang, Y. Yue, L. Wang, Int. J. Heat Mass Transf. 87, 237 (2015)

    Article  Google Scholar 

  31. E. Vadiee, Y. Fang, C. Zhang, A.M. Fischer, J.J. Williams, E.J. Renteria, G. Balakrishnan, C.B. Honsberg, Curr. Appl. Phys. 18, 752 (2018)

    Article  ADS  Google Scholar 

  32. A.P. Kirk, W.P. Kirk, J. Appl. Phys. 114, 174507 (2013)

    Article  ADS  Google Scholar 

  33. K. Li, S. Wu, S. Cao, Q. Cai, X. Wu, Appl. Therm. Eng. 192, 116918 (2021)

    Article  Google Scholar 

  34. J.-Y. Chang, Y. Yang, L. Wang, Int. J. Heat Mass Transf. 87, 237 (2015)

    Article  Google Scholar 

  35. M.P. Bernardi, D. Milovich, M. Francoeur, Nat. Commun. 7, 1 (2016)

    Article  Google Scholar 

  36. S. Basu, Y. Yang, L. Wang, Appl. Phys. Lett. 106, 033106 (2015)

    Article  ADS  Google Scholar 

  37. H. Wang, X. Liu, L. Wang, Z. Zhang, Int. J. Therm. Sci. 65, 62 (2013)

    Article  Google Scholar 

  38. Q. Xu, P. Chen, X. Wu, Q. Cai, Int. J. Thermophys. 40, 1–18 (2019)

    Article  Google Scholar 

  39. Q. Cai, P. Chen, S. Cao, Q. Ye, X. Wu, Int. J. Thermophys. 41, 161 (2020)

    Article  ADS  Google Scholar 

  40. V. Rinnerbauer, Y.X. Yeng, W.R. Chan, J.J. Senkevich, J.D. Joannopoulos, M. Soljačić, I. Celanovic, Opt. Express 21, 11482 (2013)

    Article  ADS  Google Scholar 

  41. D. Peykov, Y.X. Yeng, I. Celanovic, J.D. Joannopoulos, C.A. Schuh, Opt. Express 23, 9979 (2015)

    Article  ADS  Google Scholar 

  42. M. Greitans, V. Aristov, Autom. Control Comput Sci. 46, 179 (1983)

    Article  Google Scholar 

  43. A.S. Khanna, High Temperature Corrosion (Asm International, Materials Park, 2016)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province under Grant 19KJB470030, and by Open Foundation of State Key Laboratory of Compressor Technology (No. SKL-YSJ201910), and by the Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province MZ26100119.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qilin Cai or Xi Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, K., Yang, X. et al. Thermal Degradation of Tungsten Nanowire-Based Hyperbolic Metamaterial Emitters for Near-Field Thermophotovoltaic Applications. Int J Thermophys 43, 16 (2022). https://doi.org/10.1007/s10765-021-02934-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02934-6

Keywords

Navigation