Skip to main content
Log in

Acousto-optical Transducer with Surface Plasmons

  • ICPPP 19
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The surface plasmon resonance (SPR) is a sensitive technique for the detection of changes in dielectric parameters in close proximity to a metal film supporting surface plasmon waves. Here we study the application of the SPR effect to an efficient conversion of an acoustic signal into an optical one. Such a transducer potentially has a large bandwidth and good sensitivity. When an acoustic wave is incident onto a receiving plate positioned within the penetration depth of the surface plasmons, it creates displacements of the surface of the plate and, thus, modulates the dielectric properties in the proximity of the gold film. This modulation, in turn, modifies the light reflection under surface plasmon resonance conditions. We simulate characteristics of this acousto-optical transducer with surface plasmons and provide sets of parameters at the optical wavelength of 800 nm and 633 nm for its realization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B. Dong, C. Sun, H.F. Zhang, Optical detection of ultrasound in photoacoustic imaging. IEEE Trans. Biomed. Eng. 64, 4–15 (2017)

    Article  Google Scholar 

  2. H. Coufal, K. Meyer, R.K. Grygier, P. Hess, A. Neubrand, Precision measurement of the surface acoustic wave velocity on silicon single crystals using optical excitation and detection. J. Acoust. Soc. Am. 95, 1158 (1994)

    Article  ADS  Google Scholar 

  3. A.A. Maznev, A.A. Kolomenskii, P. Hess, Time-resolved cuspidal structure in the wave front of surface acoustic pulses on (111) Gallium Arsenide. Phys. Rev. Lett. 75, 3332 (1995)

    Article  ADS  Google Scholar 

  4. H. Sontag, A.C. Tam, Optical detection of nanosecond acoustic pulses. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 500–506 (1986)

    Article  Google Scholar 

  5. M. Szabadi, P. Hess, A.J. Kellock, H. Coufal, J.E.E. Baglin, Elastic and mechanical properties of ion-implanted silicon determined by surface-acoustic-wave spectrometry. Phys. Rev. B 58, 8941 (1998)

    Article  ADS  Google Scholar 

  6. J.-P. Monchalin, Optical detection of ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485–499 (1986)

    Article  ADS  Google Scholar 

  7. M. Clark, Optical detection of ultrasound on rough surfaces using speckle correlated spatial filtering. J. Phys. Conf. Ser. 278, 012025 (2011)

    Article  Google Scholar 

  8. B.D. Strycker, M.M. Springer, A.J. Traverso, A.A. Kolomenskii, G.W. Kattawar, A.V. Sokolov, Femtosecond-laser-induced shockwaves in water generated at an air-water interface. Opt. Express 21, 23772–23784 (2013)

    Article  ADS  Google Scholar 

  9. C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129 (1986)

    Article  ADS  Google Scholar 

  10. D.H. Hurley, O.B. Wright, Detection of ultrafast phenomena by use of a modified Sagnac interferometer. Opt. Lett. 24, 1305–1307 (1999)

    Article  ADS  Google Scholar 

  11. A. Schilling, O. Yavas, J. Bischof, J. Boneberg, P. Leiderer, Absolute pressure measurements on a nanosecond time scale using surface plasmons. Appl. Phys. Lett. 69, 4159–4161 (1996)

    Article  ADS  Google Scholar 

  12. J. Boneberg, S. Briaudeau, Z. Demirplak, V. Dobler, P. Leiderer, Two-dimensional pressure measurements with nanosecond time resolution. Appl. Phys. A Mater. Sci. Process 69, S557–S560 (1999)

    Article  ADS  Google Scholar 

  13. R. Nuster, G. Paltauf, P. Burgholzer, Comparison of surface plasmon resonance devices for acoustic wave detection in liquid. Opt. Express 15, 6087 (2007)

    Article  ADS  Google Scholar 

  14. T. Wang, R. Cao, B. Ning, A.J. Dixon, J.A. Hossack, A.L. Klibanov, Q. Zhou, A. Wang, S. Hu, All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound. Appl. Phys. Lett. 107, 153702 (2015)

    Article  ADS  Google Scholar 

  15. C.-L. Wong, H. Ho, K.-S. Chan, S.-Y. Wu, C. Lin, Application of spectral surface plasmon resonance to gas pressure sensing. Opt. Eng. 44, 124403 (2005)

    Article  ADS  Google Scholar 

  16. R. Pini, R. Salimbeni, M. Vannini, G. Toci, Probe-beam deflection diagnostics of shock waves generated during laser drilling. Appl. Phys. B 61, 505–510 (1995)

    Article  ADS  Google Scholar 

  17. P.J.S. van Capel, H.P. Porte, G. van der Star, J.I. Dijkhuis, Interferometric detection of acoustic shock waves. J. Phys. Conf. Ser. 92, 012092 (2007)

    Article  Google Scholar 

  18. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York, 1980)

    Google Scholar 

  19. E. Kretschmann, Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberflaechenplasmaschwingungen. Z. Phys. 241, 313–324 (1971)

    Article  ADS  Google Scholar 

  20. L.M. Brekhovskikh, Waves in Layered Media, 2nd edn. (Academic Press, New York, 1980)

    MATH  Google Scholar 

  21. A.A. Kolomenskii, R. Mueller, J. Wood, J. Strohaber, H.A. Schuessler, Femtosecond electron-lattice thermalization dynamics in a gold film probed by pulsed surface plasmon resonance. Appl. Opt. 52, 7352–7359 (2013)

    Article  ADS  Google Scholar 

  22. A.A. Kolomenskii, P.D. Gershon, H.A. Schuessler, Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance. Appl. Opt. 36, 6539–6547 (1997)

    Article  ADS  Google Scholar 

  23. V. Lioubimov, A. Kolomenskii, A. Mershin, D.V. Nanopoulos, H.A. Schuessler, Effect of varying electric potential on surface-plasmon resonance sensing. Appl. Opt. 43, 3426–3432 (2004)

    Article  ADS  Google Scholar 

  24. U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, M. Malmqvist, Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11, 620–627 (1991)

    Google Scholar 

  25. A. Kolomenski, A. Kolomenskii, S. Peng, J. Noel, H.A. Schuessler, Propagation of surface plasmons in a metal film with roughness. Appl. Optics 48, 5683–5691 (2009)

    Article  ADS  Google Scholar 

  26. Y. Muramoto, T. Ishibashi, InP/InGaAs pin photodiode structure maximizing bandwidth and efficiency. Electron. Lett. 39, 1749–1750 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Robert A. Welch Foundation Grant No. A1546 and the Qatar Foundation under the Grant NPRP 8-735-1-154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kolomenskii.

Additional information

This article is part of the selected papers presented at the 19th International Conference on Photoacoustic and Photothermal Phenomena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolomenskii, A.A., Surovic, E. & Schuessler, H.A. Acousto-optical Transducer with Surface Plasmons. Int J Thermophys 39, 47 (2018). https://doi.org/10.1007/s10765-018-2369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2369-0

Keywords

Navigation