Skip to main content

Advertisement

Log in

The Internal Pressure and Cohesive Energy Density of Liquid Metallic Elements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The internal pressures, \(P_{\mathrm{int}}\), of practically all the liquid metallic elements in the periodic table up to plutonium (except highly radioactive ones) at their melting points were calculated from data in the literature. They are compared with the respective cohesive energy densities, ced, obtained from the literature data too. The ratios \(P_{\mathrm{int}}{/}ced\) for various liquids are ranked as follows: molten salts < polar/hydrogen-bonded molecular solvents \(\sim \) liquid metals < room temperature ionic liquids < nonpolar molecular solvents, and the reverse of this list reflects the relative strengths of the mutual interactions of the particles constituting these liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H.S. Frank, J. Chem. Phys. 13, 493 (1943)

    Article  ADS  Google Scholar 

  2. D. Lide, Handbook of Chemistry and Physics, 82nd edn. (CRC Press, Baton Rouge, 2001–2002)

  3. A. Paskin, Adv. Phys. 16, 223 (1967)

    Article  ADS  Google Scholar 

  4. S. Blairs, M.H. Abbasi, Acustica 79, 64 (1993)

    Google Scholar 

  5. R.N. Singh, S. Arafin, A.K. George, Phys. B 387, 344 (2007)

    Article  ADS  Google Scholar 

  6. Y. Marcus, J. Chem. Thermodyn. (2016). doi:10.1016/j.jct.2016.07.027

  7. T. Iida, R. Guthrie, Metall. Mater. Trans. B 40, 959 (2009)

    Article  Google Scholar 

  8. I. Barin, O. Knacke, Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1973)

    Google Scholar 

  9. P.B. Thakor, Y.A. Sonvane, H.P. Patel, A.R. Jani, AIP Conf. Proc. 1536, 791 (2013)

    Article  ADS  Google Scholar 

  10. G. Kaptay, Mater. Sci. Eng. A 495, 19 (2008)

    Article  Google Scholar 

  11. G.R. Gathers, Rep. Prog. Phys. 49, 341 (1986)

    Article  ADS  Google Scholar 

  12. S.V. Onufriev, High Temp. 49, 205 (2011)

    Article  Google Scholar 

  13. A.V. Gross, J.A. Cahill, J. Am. Chem. Soc. 83, 4665 (1961)

    Article  Google Scholar 

  14. D.J. Steinberg, Metall. Trans. 5, 1341 (1974)

    Article  Google Scholar 

  15. R.I.L. Guthrie, T. Iida, Mater. Sci. Eng. A 178, 35 (1994)

    Article  Google Scholar 

  16. S. Blairs, Phys. Chem. Liq. 45, 399 (2007)

    Article  Google Scholar 

  17. L. Maftoon-Azad, A. Boushehri, Int. J. Thermophys. 25, 893 (2004)

    Article  ADS  Google Scholar 

  18. F. Aqra, A. Ayyad, Phys. Chem. Liq. 50, 336 (2012)

    Article  Google Scholar 

  19. N. Mehdipour, A. Boushehri, H. Eslami, J. Non Cryst. Solids 351, 1333 (2005)

    Article  ADS  Google Scholar 

  20. P.-F. Paradis, Platin. Met. Rev. 58, 124 (2014)

    Google Scholar 

  21. N. Mehdipour, F. Moosavi, Phys. Chem. Liq. 49, 347 (2011)

    Article  Google Scholar 

  22. G.F. Wakefield, A.H. Daane, F.H. Spedding, J. Chem. Phys. 47, 4994 (1967)

    Article  ADS  Google Scholar 

  23. N. Mehdipour, A. Boushehri, Int. J. Thermophys. 18, 1329 (1997)

    Article  ADS  Google Scholar 

  24. H.M. Lu, Q. Jiang, J. Phys. Chem. B 109, 15463 (2005)

    Article  Google Scholar 

  25. G. Borelius, Phys. Scr. 1, 141 (1970)

    Article  ADS  Google Scholar 

  26. P.W. Bridgman, Proc. Am. Acad. 76, 1 (1945)

    Article  Google Scholar 

  27. P.W. Bridgman, Proc. Am. Acad. 76, 75 (1948)

    Google Scholar 

  28. P.W. Bridgman, Proc. Am. Acad. 77, 199 (1949)

    Google Scholar 

  29. I.G. Murgulescu, A. Leibovici, Rev. Roum. Chim. 22, 1279 (1977)

    Google Scholar 

  30. E.K. Goharshadi, A.R. Berenji, J. Nucl. Mater. 348, 40 (2006)

    Article  ADS  Google Scholar 

  31. M.H. Mousazadeh, J. Non Cryst. Solids 353, 435 (2007)

    Article  ADS  Google Scholar 

  32. Y. Marcus, Chem. Rev. 113, 6536 (2013)

    Article  Google Scholar 

  33. Y. Marcus, Ionic Liquid Properties, from Molten Salts to RTILs (Springer, Dordrecht, 2016)

    Book  Google Scholar 

  34. Y. Marcus, J. Chem. Thermodyn. 42, 60 (2010)

    Article  Google Scholar 

  35. Y. Marcus, J. Mol. Liq. 214, 31 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhak Marcus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcus, Y. The Internal Pressure and Cohesive Energy Density of Liquid Metallic Elements. Int J Thermophys 38, 19 (2017). https://doi.org/10.1007/s10765-016-2158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2158-6

Keywords

Navigation