Skip to main content
Log in

Effect of Atomic Size on the Isothermal Bulk Modulus and Surface Tension of Liquid Metals

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The isothermal bulk modulus \(K_{{T_{m}}}\) and surface tension γm of liquid metals at the melting point increase with decreasing atomic size a, and these dependences are similar to one another. It is shown that transition metals with a hexagonal closed-packed and body-centered cubic structure are concentrated above the γm\(K_{{T_{m}}}\) regression line, and face-centered cubic metals are below this line. In alkali, alkaline earth, rare earth metals, the surface tension γm with a change in the isothermal bulk modulus \(K_{{T_{m}}}\) increases several times more intensively than in transition metals. The reduced quantities of isothermal bulk modulus and surface tension have been introduced. The reduced surface tension demonstrates high coincidence with atomic size parameter a−2, and the reduced isothermal bulk modulus with atomic size parameter a−3. The ratio of the surface tension to the product of the atomic size and the isothermal bulk modulus γm×(a \(K_{{T_{m}}}\))−1 compares the energy of atoms on the surface and in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L.D. Landau and E.M. Lifshitz: Theory of Elasticity, Pergamon Press, Oxford, 1975, pp. 8–9.

    Google Scholar 

  2. R. Shuttleworth: Proc. Phys. Soc. A, 1950, vol. 63, pp. 444–57.

    Article  Google Scholar 

  3. N.H. March and M.P. Tosi: Atomic Dynamics in Liquids, London Macmillan Press, London, 1976, pp. 256–78.

    Book  Google Scholar 

  4. T. Iida and R.I.L. Guthrie: The Thermophysical Properties of Metallic Liquids, University Press, Oxford, 2015, pp. 497–543.

    Book  Google Scholar 

  5. G. Kaptay: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 387–89.

    Article  CAS  Google Scholar 

  6. T. Iida and R. Guthrie: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 437–47.

    Article  CAS  Google Scholar 

  7. F. Aqra and A. Ayyad: Metall. Mater. Trans. B, 2011, vol. 42, pp. 5–8.

    Article  CAS  Google Scholar 

  8. B.J. Keene: Int. Mater. Rev., 1993, vol. 38, pp. 157–92.

    Article  CAS  Google Scholar 

  9. E.T. Turkdogan: Can. Metall. Q., 2002, vol. 41, pp. 151–62.

    Article  CAS  Google Scholar 

  10. Y. Marcus: Phys. Chem. Liquids, 2016, vol. 55, pp. 522–31.

    Article  Google Scholar 

  11. Y.N. Starodubtsev, V.S. Tsepelev, K.M. Wu, Y.A. Kochetkova, and N.P. Tsepeleva: Key. Eng. Mater., 2020, vol. 861, pp. 46–51.

    Article  Google Scholar 

  12. S. Blairs: Int. Mater. Rev., 2007, vol. 52, pp. 321–44.

    Article  CAS  Google Scholar 

  13. S. Wacke, T. Górecki, C. Górecki, and K. Książek: J. Phys., 2011, vol. 289, 012020.

    Google Scholar 

  14. N.N. Greenwood and A. Earnshow: Chemistry of the Elements, Butterworth-Heinemann, Oxford, 1998.

    Google Scholar 

  15. Yu.N. Starodubtsev and V.S. Tsepelev: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1886–90.

    Article  Google Scholar 

  16. Y. Marcus: J. Chem. Thermodyn., 2016, vol. 109, pp. 11–15.

    Article  Google Scholar 

  17. D.M. Herlach, P. Galenko, and D. Holland-Moritz: Metastable Solids from Undercooled Melts, Elsevier, Amsterdam, 2007, pp. 67–95.

    Google Scholar 

  18. R.D. Present: J. Chem. Phys., 1974, vol. 61, pp. 4267–69.

    Article  CAS  Google Scholar 

  19. P.A. Egelstaff and B. Widom: J. Chem. Phys., 1970, vol. 53, pp. 2667–69.

    Article  CAS  Google Scholar 

  20. Y. Marcus: J. Chem. Phys., 2013, vol. 139, 124509.

    Article  Google Scholar 

  21. F. Agra: Physica B, 2014, vol. 446, pp. 28–31.

    Article  Google Scholar 

  22. G. Weir: Proc. R. Soc. A, 2008, vol. 464, pp. 2281–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The article was made within the framework of state work No. FEUZ-0836-0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Tsepelev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodubtsev, Y.N., Tsepelev, V.S. Effect of Atomic Size on the Isothermal Bulk Modulus and Surface Tension of Liquid Metals. Metall Mater Trans B 53, 2547–2552 (2022). https://doi.org/10.1007/s11663-022-02550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02550-1

Navigation