Skip to main content
Log in

Thermal-Conductivity Measurement of Thermoelectric Materials Using \(3{{\upomega }}\) Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, a measurement system for high-temperature thermal-conductivity measurements has been designed, constructed, and characterized. The system is based on the \(3{\upomega }\) method which is an ac technique suitable for both bulk and thin-film samples. The thermal-conductivity measurements were performed in a horizontal three-zone tube furnace whose sample space can be evacuated to vacuum or alternatively a protective argon gas environment can be applied to prevent undesired oxidation and contamination of the sample material. The system was tested with several dielectric, semiconductor, and metal bulk samples from room temperature up to 725 K. The test materials were chosen so that the thermal-conductivity values covered a wide range from \(0.37\,\hbox {W}\!\cdot \! \hbox {m}^{-1}\!\cdot \! \hbox {K}^{-1}\) to \(150\,\hbox {W}\!\cdot \! \hbox {m}^{-1}\!\cdot \!\hbox {K}^{-1}\). An uncertainty analysis for the thermal-conductivity measurements was carried out. The measurement accuracy is mainly limited by the determination of the third harmonic of the voltage over the resistive metal heater strip that is used for heating the sample. A typical relative measurement uncertainty in the thermal-conductivity measurements was between 5 % and 8 % (\(k=2\)). An extension of the \(3{\upomega }\) method was also implemented in which the metal heater strip is first deposited on a transferable Kapton foil. Utilizing such a prefabricated sensor allows for faster measurements of the samples as there is no need to deposit a heater strip on each new sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.S. Toberer, L.L. Baranowski, C. Dames, Annu. Rev. Mater. Res. 42, 179 (2012)

    Article  ADS  Google Scholar 

  2. D.M. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, FL, 2006)

  3. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990)

    Article  ADS  Google Scholar 

  4. I.K. Moon, Y.H. Jeong, Rev. Sci. Instrum. 67, 29 (1996)

    Article  ADS  Google Scholar 

  5. F. Chen, J. Shulman, Y. Xue, C.W. Chu, G.S. Nolas, Rev. Sci. Instrum. 75, 4578 (2004)

    Article  ADS  Google Scholar 

  6. S.-M. Lee, Rev. Sci. Instrum. 80, 024901 (2009)

    Article  ADS  Google Scholar 

  7. E. Yusibani, P.L. Woodfield, M. Fujii, K. Shinzato, X. Zhang, Y. Takata, Int. J. Thermophys. 30, 397 (2009)

    Article  ADS  Google Scholar 

  8. S. Gauthier, A. Giani, P. Combette, Sens. Actuators A 195, 50 (2013)

    Article  Google Scholar 

  9. D.G. Cahill, M. Katiyar, J.R. Abelson, Phys. Rev. B 50, 6077 (1994)

    Article  ADS  Google Scholar 

  10. S.-M. Lee, D.G. Cahill, J. Appl. Phys. 81, 2590 (1997)

    Article  ADS  Google Scholar 

  11. T. Yamane, N. Nagai, S.I. Katayama, M. Todoki, J. Appl. Phys. 91, 9772 (2002)

    Article  ADS  Google Scholar 

  12. A. Jain, K.E. Goodson, J. Heat Trans. 130, 102402 (2008)

    Article  Google Scholar 

  13. J. Alvarez-Quintana, J. Rodríguez-Viejo, Sens. Actuators A 142, 232 (2008)

    Article  Google Scholar 

  14. B. Shen, Z. Zeng, C. Lin, Z. Hu, Int. J. Therm. Sci. 66, 19 (2013)

    Article  Google Scholar 

  15. A. Holtzman, E. Shapira, Y. Selzer, Nanotechnology 23, 495711 (2012)

    Article  Google Scholar 

  16. J. Hu, A.A. Padilla, J. Xu, T.S. Fisher, K.E. Goodson, J. Heat Trans. 128, 1109 (2006)

    Article  Google Scholar 

  17. A. Jacquot, F. Vollmer, B. Bayer, M. Jaegle, D.G. Ebling, H. Böttner, J. Electron. Mater. 39, 1621 (2010)

    Article  ADS  Google Scholar 

  18. J. Kimling, S. Martens, K. Nielsch, Rev. Sci. Instrum. 82, 074903 (2011)

    Article  ADS  Google Scholar 

  19. JCGM 100:2008, Evaluation of measurement data—guide to the expression of uncertainty in measurement, 1st edn. (2008)

  20. A. Jacquot, B. Lenoir, A. Dauscher, M. Stölzer, J. Meusel, J. Appl. Phys. 91, 4733 (2002)

    Article  ADS  Google Scholar 

  21. H. Wang, M. Sen, Int. J. Heat Mass Trans. 52, 2102 (2009)

    Article  MATH  Google Scholar 

  22. UQG Ltd., SCHOTT BOROFLOAT thermal properties, http://www.uqgoptics.com/materials_commercial_schott_borofloat.aspx. Accessed 29 November 2013

  23. NTK Technologies Inc., Comparison of ceramic materials, http://www.ntktech.com/AlN/ALN%20for%20web.pdf. p. 8. Accessed 29 November 2013

  24. eFunda Inc., Thermal conductivity of silicon, http://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Si. Accessed 29 November 2013

  25. Isabellenhütte Heusler GmbH & Co., ISOTAN properties and application notes, http://www.isabellenhuette.de/fileadmin/content/widerstandslegierungen/ISOTAN-ISABELLENHUETTE-R.pdf. Accessed 29 November 2013

  26. Ferd. Wagner GmbH, ISOTAN technical data sheet, http://www.zapp.com/fileadmin/downloads/01-Produkte/Datenblaetter-Praezisionsprofile-Ferd-Wagner/Werkstoffdatenbl%C3%A4tter%20englisch/engl_isotan%20Cu%20Ni44.pdf. Accessed 29 November 2013

Download references

Acknowledgments

This work has received funding from the European Union on the basis of Decision No 912/2009/EC. The research has been carried out in the framework of the European Metrology Research Programme Eng02 - Metrology for Energy Harvesting. The development of the sample preparation techniques was partly funded by the Academy of Finland Project Number 140009, Cleen Ltd. and TEKES (the Finnish Funding Agency for Technology and Innovation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hahtela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahtela, O., Ruoho, M., Mykkänen, E. et al. Thermal-Conductivity Measurement of Thermoelectric Materials Using \(3{{\upomega }}\) Method. Int J Thermophys 36, 3255–3271 (2015). https://doi.org/10.1007/s10765-015-1970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1970-8

Keywords

Navigation