Skip to main content
Log in

Canadian Field Soils III. Thermal-Conductivity Data and Modeling

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Forty field soil samples, from nine Canadian Provinces, were laboratory tested for their ability to conduct heat, i.e., thermal conductivity (\(\lambda \)), using a non-stationary probe technique. The measurements were carried out on moderately compacted samples at room temperature, and over a full range of degree of saturation (\(S_{\mathrm{r}})\) ranging from dryness to full saturation. The analysis of \(\lambda \) data revealed a strong nonlinear variation of \(\lambda \) versus \(S_{\mathrm{r}}\) that can be sub-analyzed in four \(S_{\mathrm{r}}\)-based domains, i.e., residual, transitory meniscus, micro/macro-porous capillary, and superfluous. In the residual domain (\(0 < S_{\mathrm{r}}< S_{{\hbox {r-cr}}})\), a very small \(\lambda \) variation is observed. In the transitory meniscus domain (\(S_{{\hbox {r-cr}}} < S_{\mathrm{r}} < S_{{\hbox {r-}\mathrm{PWP}}})\), for the majority of soils, a sharp \(\lambda \) increase was observed. In the micro/macro-porous capillary domain (\(S_{{\hbox {r-}\mathrm{PWP}}} < S_{\mathrm{r}} < S_{{\hbox {r-}\mathrm{FC}}})\), a moderate \(\lambda \) increase was noted. Finally, in the superfluous domain (\(S_{{\hbox {r-}\mathrm{FC}}} < S_{\mathrm{r}} < S_{{\hbox {r-sat}}})\), a very slight \(\lambda \) increase was generally noted. On average, the highest \(\lambda \) values (from 1.9 \(\hbox {W}{\cdot }\hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) to 3.2 \(\hbox {W} {\cdot }\hbox {m}^{-1}{\cdot } \hbox {K}^{-1})\) were obtained from saturated soil samples with high quartz content, e.g., samples from sites in Nova Scotia and Prince Edward Island. On the other hand, the lowest \(\lambda \) (from 1.1 \(\hbox {W}{\cdot }\hbox {m}^{-1}{\cdot }\hbox {K}^{-1}\) to 1.4 \(\hbox {W}{\cdot }\hbox {m}^{-1}{\cdot }\hbox {K}^{-1})\) was observed from saturated soil samples with lower quartz content, e.g., British Columbia samples. The measured data were used to verify a recently developed series–parallel (S–\({\vert }{\vert }\)) model for unsaturated soils. On average, estimates of the S–\({\vert }{\vert }\) model, with a parallel arrangement of air and water in the third of three conductive paths, were within \({\pm }0.08\,\hbox {W}{\cdot }\hbox {m}^{-1}{\cdot }\hbox {K}^{-1}\) of experimental data. However, the S–\({\vert }{\vert }\) model, with a series arrangement of air and water in the third conductive path, showed slightly better estimates when it was applied to fine-textured soils. In addition, there was no strong correlation noted between the performance of the S–\({\vert }{\vert }\) models and soil quartz content. Consequently, it is recommended to compare estimates from both models when they are applied to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.S. Kersten, Thermal Properties of Soils, Bulletin No. 28 (University of Minnesota, Minnesota, 1949)

  2. J. Mostaghimi, E. Pfender., Wärme-Und Stoffübertragung. 13, 3 (1980)

  3. E. Penner, G.H. Johnston, L.E. Goodrich, Can. Geotech. J. 12, 271 (1975)

    Article  Google Scholar 

  4. K.J. McInness, Thermal conductivities of soils from dryland wheat regions in eastern Washington, M.S. Thesis, Washington State University, 1981

  5. R.J. Parikh, J.A. Havens, H.D. Scott, Soil Sci. Soc. Am. J. 43, 1050 (1979)

    Article  Google Scholar 

  6. S.J. Riha, K.J. Mclnnes, S.W. Childs, G.S. Campbell, Soil Sci. Soc. Am. J. 44, 1323 (1980)

    Article  Google Scholar 

  7. B.S. Ghuman, R. Lal, Soil Sci. 139, 74 (1985)

    Article  Google Scholar 

  8. S. Sawada, T. Ohno, Laboratory Studies on Thermal Conductivity of Caly, Silt and Sand in Frozen and Unfrozen States, in Proceedings of Fourth International Symposium on Ground Freezing, Sapporo, Japan (1985), pp. 53–58

  9. G.S. Campbell, J.D. Jungbauer Jr., W.R. Bidlake, R.D. Hungerford, Soil Sci. 158, 307 (1994)

  10. T.E. Ochsner, R. Horton, T. Ren, Soil Sci. Soc. Am. J. 65, 1641 (2001)

    Article  Google Scholar 

  11. K.L. Bristow, G.J. Kluitenberg, R. Horton, Soil Sci. Soc. Am. J. 58, 1288 (1994)

    Article  Google Scholar 

  12. J. Bachmann, R. Horton, T. Ren, R.R. van der Ploeg, Soil Sci. Soc. Am. J. 65, 1675 (2001)

    Article  Google Scholar 

  13. Y. Yamazaki, F. Tsuchiya, O. Tsuji, Measurement and estimation of thermal conductivity of quartz-containing frozen and unfrozen soils. Trans. JSIRRE 226, 497 (2003)

    Google Scholar 

  14. S. Lu, T. Ren, Y. Gong, R. Horton, Soil Sci. Soc. Am. J. 71, 8 (2007)

    Article  Google Scholar 

  15. T. Ren, K. Noborio, R. Horton, Soil Sci. Soc. Am. J. 63, 450 (1999)

    Article  Google Scholar 

  16. T. Kasubuchi, T. Momose, F. Tsuchiya, V.R. Tarnawski, Normalized thermal conductivity model for three Japanese soils. Trans. Jpn. Soc. Irrig. Drain. Reclam. Eng. 251, 53 (2007)

    Google Scholar 

  17. O. Johansen, Thermal conductivity of soils. Ph.D. thesis, Trondheim, Norway 1975 (CRREL Draft Translation 637, 1977). ADA 044002

  18. J. Schönenberger, T. Momose, B. Wagner, W.H. Leong, V. R. Tarnawski, Int. J. Thermophys. 33 (2012)

  19. B.R. Blake, K.H. Hartge, Particle Density, in ASA Monograph No. 9, Part 1, ed. By A. Klute (1986), p. 377

  20. V.R. Tarnawski, T. Momose, G. Bovesecchi, P. Coppa, Int. J. Thermophys. 30, 949 (2009)

    Article  ADS  Google Scholar 

  21. R. Holton, O.J. Wierenga, D.R. Nielsen, Soil Sci. 133, 397 (1982)

    Article  Google Scholar 

  22. V.R. Tarnawski, T. Momose, W.H. Leong, Int. J. Thermophys. 32, 984 (2011)

    Article  ADS  Google Scholar 

  23. ISO, Guide to the Expression of Uncertainty in Measurement (ISO, Geneva, 1995)

  24. V.R. Tarnawski, F. Gori, Int. J. Energy Res. 26, 143 (2002)

    Article  Google Scholar 

  25. V.R. Tarnawski, W.H. Leong, Thermal conductivity of soils at very low moisture content and moderate temperatures. Transp. Porous Media 41, 137 (2000)

    Article  Google Scholar 

  26. W.O. Smith, Soil Sci. Soc. Am. 193, 32 (1939)

    Google Scholar 

  27. G.A. Nakshabandi, H. Kohnke, Agric. Meteorol. 2, 271 (1965)

    Article  Google Scholar 

  28. A.R. Sepaskhah, L. Boersma, Soil Sci. Soc. Am. J. 43, 439 (1979)

    Article  Google Scholar 

  29. W.J. Rawls, D.L. Beakensiek, K.E. Saxton, Trans. ASAE 25, 1316 (1982)

    Article  Google Scholar 

  30. V.R. Tarnawski, W.H. Leong, Int. J. Thermophys. 33, 1191 (2012)

    Article  ADS  Google Scholar 

  31. G.S. Campbell, Soil Physics with BASIC: Transport Models for Soil–Plant Systems (Elsevier, New York, 1985)

    Google Scholar 

  32. R.B. Clapp, G.M. Hornberger, Water Resour. Res. 14, 601 (1978)

    Article  ADS  Google Scholar 

  33. H.N. Holtan, C.B. England, G.P. Lawless, G.A. Schumacher, Moisture Tension Data for Selected Soils on Experimental Watersheds (Agricultural Research Services, Beltsville, MD, 1968), pp. 41–144

  34. Lichtenecker. Die Dielektrizitatskonstante natiirlicherundkiinstlicherMischkbrper. Zeiischrift 27 (1926)

  35. O.T. Farouki, Thermal Properties of Soils (Trans Tech Publication, Dürnten, Switzerland, 1986)

  36. C. Clauser, E. Huenges, Thermal Conductivity of Rocks and Minerals, in Rock Physics and Phase Relations—A Handbook of Physical Constants, AGU Reference Shelf 3, vol. 105, ed. by T.J. Ahrens (American Geophysical Union, Washington, DC, 1995)

  37. F. Brigaud, G. Vasseur, Geophys. J. 98, 525 (1989)

    Article  ADS  Google Scholar 

  38. K. Horai, J. Geophys. Res. 76, 1278 (1971)

    Article  ADS  Google Scholar 

  39. V.R. Tarnawski, M. McCombie, W.H. Leong, B. Wagner, T. Momose, J. Schonenberger, Int. J. Thermophys. 33, 843 (2012)

    Article  ADS  Google Scholar 

  40. V.R. Tarnawski, T. Momose, W.H. Leong, Geotechnique 59, 331 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Discovery Grants from Natural Sciences and Engineering Research Council (NSERC) Canada. Sincere thanks to Geological Survey of Bavaria (Germany) for providing XRD/XRF analyses. Special thanks to Dr. Tusheng Ren of China Agricultural University, Beijing, China, for his useful comments during the final preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Tarnawski.

Appendices

Appendix 1

See Tables 8, 9, 10, 11, 12, 13, 14, 15, and 16.

Table 8 Soils from Nova Scotia
Table 9 Soils from Prince Edward Island
Table 10 Soils from New Brunswick
Table 11 Soils from Quebec
Table 12 Soils from Ontario
Table 13 Soils from Manitoba
Table 14 Soils from Saskatchewan
Table 15 Soils from Alberta
Table 16 Soils from British Colombia

Appendix 2

See Table 17.

Table 17 Canadian soils: mineral content

Appendix 3

See Table 18.

Table 18 Thermal-conductivity data (\(\hbox {W} {\cdot } \hbox {m}^{-1} {\cdot } \hbox {K}^{-1}\)) of 40 Canadian soils and their relative standard deviations (%)

Appendix 4

Forty Canadian soils: thermal conductivity versus degree of saturation (Figs. 15, 16, 17, 18, 19, 20, 21, 22).

Fig. 15
figure 15

Nova Scotia soils: thermal conductivity versus degree of saturation

Fig. 16
figure 16

Prince Edward Island soils: thermal conductivity versus degree of saturation

Fig. 17
figure 17

New Brunswick soils: thermal conductivity versus degree of saturation

Fig. 18
figure 18

Quebec soils: thermal conductivity versus degree of saturation

Fig. 19
figure 19

Ontario soils: thermal conductivity versus degree of saturation

Fig. 20
figure 20

Manitoba soils: thermal conductivity versus degree of saturation

Fig. 21
figure 21

Alberta and Saskatchewan soils: thermal conductivity versus degree of saturation

Fig. 22
figure 22

British Columbia soils: thermal conductivity versus degree of saturation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarnawski, V.R., Momose, T., McCombie, M.L. et al. Canadian Field Soils III. Thermal-Conductivity Data and Modeling. Int J Thermophys 36, 119–156 (2015). https://doi.org/10.1007/s10765-014-1793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1793-z

Keywords

Navigation