Skip to main content

Advertisement

Log in

Thermodynamic Study of Transformation of Methane to Synthesis Gas Over Metal Oxides

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A metal oxide reduction-water splitting cycle is a new developing method to produce synthesis gas without using a catalyst. In the reduction stage, metal oxide reduction and methane activation are combined in an efficient and energy-saving process using methane as a reducing agent. In this study, the effect of temperature and reductant (oxidant) amount on the equilibrium composition of products, graphitic carbon formation, yield of synthesis gas (water splitting stage), and produced \(\text {H}_2/\text {CO}\) ratio are thermodynamically investigated. This investigation includes metal oxides of zinc, tin, cobalt, and nickel. The results show that the synthesis gas is produced simultaneously with gaseous zinc, molten tin, solid cobalt, and solid nickel for those metal oxides in the reduction process. In the case of tin oxide, the feasibility of the graphitic carbon formation is less than the other oxides. The maximum yield of synthesis gas occurs in the stoichiometric molar ratio of methanothermal reduction reactions. From the methane consumption point of view, zinc oxide has a much higher synthesis gas yield. Finally, it is proposed that cobalt and nickel oxides can be used only in the reduction stage to produce synthesis gas and reduced metals due to low equilibrium conversion in the water splitting stage. The metal oxide reduction-water splitting cycle can be developed as an environmentally friendly technology for synthesis gas production over metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Liu, C. Song, V. Subramani, Hydrogen and Syngas Production and Purification Technologies (Wiley, Hoboken, NJ, 2010)

  2. A. Shamkhali, M.R. Omidkhah, J. Towfighi, M.R. Jafari Nasr, Pet. Sci. Technol. 30, 594 (2012)

    Article  Google Scholar 

  3. I. Dybkjaer, Fuel Process. Technol. 42, 85 (1995)

    Article  Google Scholar 

  4. L. Ma, D.L. Trimm, Appl. Catal. A Gen. 138, 265 (1996)

    Article  Google Scholar 

  5. S. Assabumrungrat, N. Laosiripojana, in Encyclopedia of Electrochemical Power Sources, ed. by G. Jrgen (Elsevier, Amsterdam, 2009), pp. 238–248

  6. C. Song, Chem. Innov. 31, 21 (2001)

    Google Scholar 

  7. H. Jiang, H. Li, Y. Zhang, Prog. Chem. 18, 1270 (2006)

    Google Scholar 

  8. W. Cho, T. Song, A. Mitsos, J.T. McKinnon, G.H. Ko, J.E. Tolsma, D. Denholm, T. Park, Catal. Today 139, 261 (2009)

    Article  Google Scholar 

  9. M.R. Rahimpour, Z. Arab Aboosadi, A.H. Jahanmiri, J. Nat. Gas Sci. Eng. 9, 149 (2012)

    Article  Google Scholar 

  10. J. Li, H. Yoon, E.D. Wachsman, Int. J. Hydrog. Energy 37, 19125 (2012)

    Article  Google Scholar 

  11. D. Ghosh, A.K. Roy, A. Ghosh, Trans. ISIJ 26, 186 (1986)

    Article  Google Scholar 

  12. A. Steinfeld, G. Thompson, Energy 19, 1077 (1994)

    Article  Google Scholar 

  13. A. Steinfeld, A. Frei, P. Kuhn, D. Wuillemin, Int. J. Hydrog. Energy 20, 793 (1995)

    Article  Google Scholar 

  14. H. Ale Ebrahim, E. Jamshidi, Chem. Eng. Res. Des. 79, 62 (2001)

    Article  Google Scholar 

  15. G. Zhang, O. Ostrovski, Metall. Mater. Trans. B 31, 129 (2000)

    Article  Google Scholar 

  16. B. Khoshandam, R.V. Kumar, E. Jamshidi, Metall. Mater. Trans. B 35, 825 (2004)

    Article  Google Scholar 

  17. B. Khoshandam, R.V. Kumar, E. Jamshidi, AlChE J. 52, 1094 (2006)

    Article  Google Scholar 

  18. N. Anacleto, O. Ostrovski, S. Ganguly, ISIJ Int. 44, 1480 (2004)

    Article  Google Scholar 

  19. R. Alizadeh, E. Jamshidi, H. Ale-Ebrahim, Chem. Eng. Technol. 30, 1123 (2007)

    Article  Google Scholar 

  20. R. Alizadeh, E. Jamshidi, H. Ale Ebrahim, Thermochim. Acta 460, 44 (2007)

    Article  Google Scholar 

  21. R. Alizadeh, O. Ostrovski, IJMSE 8, 1 (2011)

    Google Scholar 

  22. S. Cetinkaya, S. Eroglu, Int. J. Miner. Process. 110–111, 71 (2012)

    Article  Google Scholar 

  23. A. Steinfeld, Energy 22, 311 (1997)

    Article  Google Scholar 

  24. R. Alizadeh, E. Jamshidi, G. Zhang, J. Nat. Gas Chem. 18, 124 (2009)

    Article  Google Scholar 

  25. W.R. Smith, R.W. Missen, Chemical Reaction Equilibrium Analysis: Theory and Algorithms (Wiley, New York, 1982)

    Google Scholar 

  26. I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (Wiley-VCH Verlag GmbH, Weinheim, 1995)

    Book  Google Scholar 

  27. H. Ale Ebrahim, E. Jamshidi, Energy Convers. Manag. 45, 345 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, P., Alizadeh, R. & Fatehifar, E. Thermodynamic Study of Transformation of Methane to Synthesis Gas Over Metal Oxides. Int J Thermophys 36, 88–103 (2015). https://doi.org/10.1007/s10765-014-1762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1762-6

Keywords

Navigation