Skip to main content
Log in

Effect of active metals and process factors on the catalytic decomposition of methane for hydrogen production

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Catalytic decomposition of methane (CDM) is an environmentally friendly technique to produce hydrogen and nano-carbon materials without greenhouse gas emissions. To compare the catalytic activity and hydrogen productivity of various active metals in the CDM reaction, experiments were performed by synthesizing Fe–Al, Co–Al, and Ni–Al catalysts through the co-precipitation method. According to the hydrogen production calculation for each catalyst, the Ni-based catalyst exhibited the best hydrogen production at a reaction temperature of 600 °C. It could be attributed to the influence of the strong metal–support interaction on the catalytic activity. Based on the Ni–Al catalyst, which showed better hydrogen production than the other active metals,

the activity and hydrogen production of the CDM process were analyzed according to different process factors. 90 L/gcat of hydrogen was produced through the optimization of process factors such as reduction temperature, reduction time, spatial velocity, methane flow, and gas addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I. Dincer, Renew. Sust Energ. 4, 157 (2000)

    Article  Google Scholar 

  2. D.W. Kim, L.K. Kwac, H.G. Kim, S.K. Ryu, Carbon Lett. 32, 295 (2022)

    Article  Google Scholar 

  3. A.-S. Al-Fatesh, S. Barama, A.-A. Ibrahim, A. Barama, W.-U. Khan, A. Fakeeha, Chem. Eng. Commun. 204, 739 (2017)

    Article  CAS  Google Scholar 

  4. N. Naeem, A.H. Khoja, F.A. Butt, M. Arfan, R. Liaquat, A.U. Hasnat, Res. Chem. Intermed. 48, 2007 (2022)

    Article  CAS  Google Scholar 

  5. H.F. Abbas, W.W. Daud, Int. J. Hydrogen Energy 35, 1160 (2010)

    Article  CAS  Google Scholar 

  6. H.F. Abbas, W.W. Daud, Appl Catal A: Gen 388, 232 (2010)

    Article  CAS  Google Scholar 

  7. M. Balat, M. Balat, Int. J. Hydrogen Energy 34, 3589 (2009)

    Article  CAS  Google Scholar 

  8. A.H. Khoja, M. Anwar, S. Shakir, M.T. Mehran, A. Mazhar, A. Javed, N.A.S. Amin, Res. Chem. Intermed. 46, 3817 (2020)

    Article  CAS  Google Scholar 

  9. R. Musamali, Y.M. Isa, Energy Technol. 7, 1800593 (2019)

    Article  Google Scholar 

  10. R. Minhas, A.H. Khoja, N. Naeem, S. Shakir, R. Liaquat, I.U. Din, Res. Chem. Intermed. 49, 3181 (2023)

    Article  CAS  Google Scholar 

  11. Y.A. Al-Baqmaa, A.S. Al-Fatesh, A.A. Ibrahim, A.A. Bagabas, F.S. Almubadde, A.I. Alromaeh, J.K. Abu-Dahrieh, A.E. Abasaeed, A.H. Fakkeh, Res. Chem. Intermed. 49, 5015 (2023)

    Article  CAS  Google Scholar 

  12. Y. Li, J. Li, W. Yang, X. Wang, Nanoscale Horiz. 5, 1174 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. N. Bayat, M. Rezaei, F. Meshkani, Int. J. Hydrogen Energy 41, 1574 (2016)

    Article  CAS  Google Scholar 

  14. K.R. Parmar, K. Pant, S. Roy, Energy Convers. Manag. 232, 113893 (2021)

    Article  CAS  Google Scholar 

  15. N. Muradov, F. Smith, C. Huang, T. Ali, Catal. Today 116, 281 (2006)

    Article  CAS  Google Scholar 

  16. V. Palma, E. Meloni, S. Renda, M. Martino, C 6, 52 (2020)

    CAS  Google Scholar 

  17. D. Torres, S. De Llobet, J. Pinilla, M. Lázaro, I. Suelves, R. Moliner, J Nat Gas Sci Eng 21, 367 (2012)

    CAS  Google Scholar 

  18. T. Koerts, M.J. Deelen, R.A. Van Santen, J. Catal. 138, 101 (1992)

    Article  CAS  Google Scholar 

  19. R.A. Couttenye, M.H. De Vila, S.I. Suib, J. Catal. 233, 317 (2005)

    Article  CAS  Google Scholar 

  20. R.R. Silva, H.A. Oliveira, A.C. Guarino, B.B. Toledo, M.B. Moura, B.T. Oliveira, F.B. Passos, Int. J. Hydrogen Energy 41, 6763 (2016)

    Article  CAS  Google Scholar 

  21. A.A. Ibrahim, A.H. Fakeeha, A.S. Al-Fatesh, A.E. Abasaeed, W.U. Khan, Int. J. Hydrogen Energy 40, 7593 (2015)

    Article  CAS  Google Scholar 

  22. Y. Echegoyen, I. Suelves, M. Lazaro, R. Moliner, J. Palacios, J. Power. Sour 169, 150 (2007)

    Article  CAS  Google Scholar 

  23. B. Han, F. Wang, L. Zhang, Y. Wang, W. Fan, L. Xu, H. Yu, Z. Li, Res. Chem. Intermed. 46, 1735 (2020)

    Article  CAS  Google Scholar 

  24. A.C. Dupuis, Prog. Mater. Sci. 50, 929 (2005)

    Article  CAS  Google Scholar 

  25. H. Gergeroglu, M.F. Ebeoglugil, Carbon Lett. 32, 1729 (2022)

    Article  Google Scholar 

  26. S.-P. Chai, S.H.S. Zein, A.R. Mohamed, Chem. Phys. Lett. 426, 345 (2006)

    Article  CAS  Google Scholar 

  27. E. Välimäki, L. Yli-Varo, H. Romar, U. Lassi, C. 7, 50 (2021)

    Google Scholar 

  28. S.J. Park, K.D. Kim, Y.S. Park, K.S. Go, W. Kim, M. Kim, N.S. Nho, D.H. Lee, J. Ind. Eng. Chem. 109, 384 (2022)

    Article  CAS  Google Scholar 

  29. S.-P. Chai, S.H.S. Zein, A.R. Mohamed, Appl Catal A: Gen 326, 173 (2007)

    Article  CAS  Google Scholar 

  30. de Jong KP, (2009) Synthesis of solid catalysts, 1st edn. Wiley, UK, pp 135–151.

  31. M. Popov, P. Kurmashov, A. Bannov, J. Phys. Conf. Ser. 1942, 012038 (2021)

    Article  CAS  Google Scholar 

  32. K. Harun, S. Adhikari, H. Jahromi, RSC Adv. 10, 40882 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R. Yang, X. Li, J. Wu, X. Zhang, Z. Zhang, Y. Cheng, J. Guo, Appl Catal A: Gen 368, 105 (2009)

    Article  CAS  Google Scholar 

  34. N.W. Hurst, S.J. Gentry, A. Jones, B.D. McNicol, Chem. Rev. 24, 233 (1982)

    CAS  Google Scholar 

  35. A. Venugopal, S.N. Kumar, J. Ashok, D.H. Prasad, V.D. Kumari, K. Prasad, M. Subrahmanyam, Int. J. Hydrogen Energy 32, 1782 (2007)

    Article  CAS  Google Scholar 

  36. G. Wang, F. Luo, K. Cao, Y. Zhang, J. Li, F. Zhao, R. Chen, J. Hong, Energy Technol. 7, 1800359 (2019)

    Article  Google Scholar 

  37. B. Saini, M. Yadav, S.K. Jha, R. Krishnapriya, P. Kang, V. Kant, R. Singhal, R.K. Sharma, Sustain Energy Fuels 7, 2568 (2023)

    Article  CAS  Google Scholar 

  38. A. Gharibi, A. Shariati, M.A. Takassi, Chin. J. Chem. Eng. 21, 1007 (2013)

    Article  Google Scholar 

  39. W. Ma, G. Jacobs, W.D. Shafer, Y. Ji, J.L.S. Klettlinger, S. Khalid, S.D. Hopps, B.H. Davis, Catalysts 9, 862 (2019)

    Article  CAS  Google Scholar 

  40. T.S.T. Saharuddin, F. Salleh, A. Samsuri, R. Othaman, M.A. Yarmo, Int. J. Chem. Eng. Appl. 6, 405 (2015)

    CAS  Google Scholar 

  41. J. Zieliński, I. Zglinicka, L. Znak, Z. Kaszkur, Appl. Catal. A 381, 191 (2010)

    Article  Google Scholar 

  42. H. Ago, K. Nakamura, N. Uehara, M. Tsuji, J. Phys. Chem. B 108, 18908 (2004)

    Article  CAS  Google Scholar 

  43. B. Gao, I.-W. Wang, L. Ren, T. Haines, J. Hu, Ind. Eng. Chem. Res. 58, 798 (2018)

    Article  Google Scholar 

  44. J.B. Choi, J.S. Im, S.C. Kang, Y.S. Lee, C.W. Lee, Carbon Lett. 33, 477 (2023)

    Article  Google Scholar 

  45. L. Wang, L. Wang, X. Meng, F.S. Xiao, Adv. Mater. 31, 1901905 (2019)

    Article  CAS  Google Scholar 

  46. R.K. Singha, A. Shukla, A. Yadav, L.S. Konathala, R. Bal, Appl. Catal. B 202, 473 (2017)

    Article  CAS  Google Scholar 

  47. S. Takenaka, M. Serizawa, K. Otsuka, J. Catal. 222, 520 (2004)

    Article  CAS  Google Scholar 

  48. I. Suelves, J. Pinilla, M. Lázaro, R. Moliner, J. Palacios, J. Power. Sour. 192, 35 (2009)

    Article  CAS  Google Scholar 

  49. N. Rodriguez, M. Kim, R. Baker, J. Catal. 144, 93 (1993)

    Article  CAS  Google Scholar 

  50. Y. Zhang, K.J. Smith, Catal. Today 77, 257 (2002)

    Article  CAS  Google Scholar 

  51. Q. Chen, A.C. Lua, Chem. Eng. J. 389, 124366 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported the Technology Innovation Program (20010853, Development of natural gas-based carbon material on graphitic structure for high crystalline conductivity) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by the Technology Innovation Program (RS-2023-00265608, Development of production technology of high value-added chemical using by-product gas in Naphtha Cracker) funded by the Ministry of Trade Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Contributions

In ho Seong wrote the main manuscript text and prepared figures and tables. Seok Chang Kang, Jong Dae Lee, Ji Sun Im reiviewed the manuscript.

Corresponding authors

Correspondence to Jong Dae Lee or Ji Sun Im.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 71 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seong, I.H., Kang, S.C., Lee, J.D. et al. Effect of active metals and process factors on the catalytic decomposition of methane for hydrogen production. Res Chem Intermed (2024). https://doi.org/10.1007/s11164-024-05284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11164-024-05284-8

Keywords

Navigation