Skip to main content
Log in

Reduction of titania by methane-hydrogen-argon gas mixture

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Reduction of titania using methane-containing gas was investigated in a laboratory fixed-bed reactor in the temperature range 1373 to 1773 K. The reduction product is titanium oxycarbide, which is a solid solution of TiC and TiO. At 1373 K, the formation rate of TiC is very slow. The rate and extent of reaction increase with increasing temperature to 1723 K. A further increase in temperature to 1773 K does not affect the reaction rate and extent. An increase in methane concentration to 8 vol pct favors the reduction process. A further increase in methane concentration above 8 vol pct causes excessive carbon deposition, which has a negative effect on the reaction rate. Hydrogen partial pressure should be maintained above 35 vol pct to depress the cracking of methane. Addition of water vapor to the reducing gas strongly retards the reduction reaction, even at low concentrations of 1 to 2 vol pct. Carbon monoxide also depresses the reduction process, but its effect is significant only at higher concentrations, above 10 vol pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heinz Sirum: in Titanium. Occurrence, Handbook of Extractive Metallurgy, F. Habashi, ed., Wiley-VCH, New York, NY, 1997, p. 1133.

    Google Scholar 

  2. K.J. Stanaway: Min. Eng., 1994, pp. 1367–70.

  3. A. Ohno and H.U. Ross: Can. Metall. Q., 1963, vol. 2, pp. 259–79.

    CAS  Google Scholar 

  4. G.V. Sadykhov, V.A. Reznichenko, I.A. Karyazin, and L.O. Naumova: Russ. Metall. (Metally), 1993, pp. 45–47.

  5. R. Bock: A Handbook of Decomposition Methods in Analytical Chemistry, translated and revised by Iain L. Marr, International Textbook Company, Glasgow, UK, 1979, pp. 268–70.

    Google Scholar 

  6. V.A. Nieberlein: Report of Investigation No. 5349, United States Department of The Interior, Washington, DC, July 1957.

  7. R. Koc and J.S. Folmer: J. Mater. Sci., 1997, vol. 32, pp. 3101–11.

    Article  CAS  Google Scholar 

  8. S.D. Dunmead, Z.A. Munir, and J.B. Holt: J. Mater. Sci., 1991, vol. 26, pp. 2410–16.

    Article  CAS  Google Scholar 

  9. I.N. Mihailescu, N. Chitica, V.S. Teodorescu, M. Popescu, M.L. De Giorgi, A. Luches, A. Perrone, Ch. Boulmer-Leborgne, J. Hermann, B. Dubreuil, S. Udrea, A. Barborica, and I. Iova: J. Appl. Phys., 1994, vol. 75, pp. 5286–94.

    Article  CAS  Google Scholar 

  10. S.T. Oyama, J.C. Schlatter, J.E. Metcalfe III, and J.M. Lambert, Jr.: Ind. Eng. Chem. Res., 1988, vol. 27, pp. 1639–48.

    Article  CAS  Google Scholar 

  11. Slag Atlas, Verein Deutscher Eisenhuttenleute, (VDEh), ed., Verlag Stahleisen GmbH, Dusseldorf, Germany, 1995, p. 36.

    Google Scholar 

  12. S. Shimada: J. Mater. Sci., 1996, vol. 31, pp. 673–77.

    Article  CAS  Google Scholar 

  13. V.D. Lyubimov, T.A. Timoshchuk, and M.A. Kalacheva: Russ. Metall. (Metally), 1992, pp. 16–21.

  14. R. Koc and J.S. Folmer: J. Am. Ceram. Soc., 1997, vol. 80, pp. 952–56.

    Article  CAS  Google Scholar 

  15. D.D. Harbuck, C.F. Davidson, and B. Monte: J. Met., 1986, vol. 38, pp. 47–50.

    CAS  Google Scholar 

  16. P. Tristant and P. Lefort: J. Alloys Compd., 1993, vol. 196, pp. 137–44.

    Article  CAS  Google Scholar 

  17. A. Afir, M. Achour, and A. Pialoux: J. Alloys Compd., 1994, vol. 210, pp. 201–08.

    Article  CAS  Google Scholar 

  18. K.S. Coley, B.S. Terry, and P. Grieveson: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 485–94.

    CAS  Google Scholar 

  19. G.V. White, K.J.D. Mackenzie, and J.H. Johnston: J. Mater. Sci., 1992, vol. 27, pp. 4287–93.

    Article  CAS  Google Scholar 

  20. R. Shaviv: Mater. Sci. Eng., 1996, vol. A209, pp. 345–52.

    CAS  Google Scholar 

  21. Malcolm W. Chase, Jr.: NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society, Washington, DC, 1998, pp. 550–655 & 1777–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Ostrovski, O. Reduction of titania by methane-hydrogen-argon gas mixture. Metall Mater Trans B 31, 129–139 (2000). https://doi.org/10.1007/s11663-000-0138-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0138-4

Keywords

Navigation