Skip to main content
Log in

Thermophysical Property Measurements: The Journey from Accuracy to Fitness for Purpose

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Until the 1960s much of the experimental work on the thermophysical properties of fluids was devoted to the development of methods for the measurement of the properties of simple fluids under moderate temperatures and pressures. By the end of the 1960s a few methods had emerged that had both a rigorous mathematical description of the experimental method and technical innovation to render measurements precise enough to rigorously test theories of fluids for both gas and liquid phases. These studies demonstrated that, for the gas phase at least, the theories were exceedingly reliable and led to physical insight into simple molecular interactions. The thesis of this paper is, after those early successes, there has been a divergence of experimental effort from the earlier thrust and, in the future, there needs to be focus on in situ measurement of properties for process fluids. These arguments are based upon the balance between the uncertainty of the results and their utility and economic value as well as upon technical developments, which have provided reliable and robust sensors of properties. The benefits accrued from accurate measurements on a few materials to validate predictions of the physical properties, for a much wider set of mixtures over a wide range of conditions, are much less relevant for most engineering purposes. However, there remain some special areas of science where high accuracy measurements are an important goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Montreal Protocol on Substances that Deplete the Ozone Layer: Final Act, United Nations Environmental Programme (UNEP) (Sept. 16, 1987).

  2. Fisher M.E., Burford R.J. (1967). Phys. Rev. 156:583

    ADS  Google Scholar 

  3. Rowlinson J.S. (1997). J. Stat. Phys. 87:957

    ADS  Google Scholar 

  4. Senger J.V. and J. Luettmer-Strathmann, in Transport Properties of Fluids: Their Correlation, Prediction and Estimation, Millat J., Dymond J.H., and C. A. Nieto de Castro, eds. (Cambridge University Press for International Union of Pure and Applied Chemistry, Cambridge, UK, 1996), Chap. 6, pp. 113–137.

  5. Wakeham W.A. (1996). Fluid Phase Equilib. 117:334

    Google Scholar 

  6. Chapman S., Cowling T.G. (1952) The Mathematical Theory of Non-Uniform Gases, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  7. Hirschfelder J.O., Curtiss C.F., and Bird R.B., Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 1954), pp. 478–480.

  8. Maitland G., Rigby M., Smith E.B., Wakeham W.A. (1987) Intermolecular Forces: Their Origin and Determination. Clarendon Press, Oxford

    Google Scholar 

  9. DiPippo R., Kestin J., Whitelaw J.H. (1966). Physica 32:2064

    ADS  Google Scholar 

  10. Barker J.A., Fisher R.A., Watts R.O. (1971). Mol. Phys. 21:657

    ADS  Google Scholar 

  11. Maitland G.C., Smith E.B. (1971). Mol. Phys. 22:861

    ADS  Google Scholar 

  12. Siska P.E., Parson J.M., Schafer T.P., Lee Y.T. (1971). J. Chem. Phys. 55:5762

    ADS  Google Scholar 

  13. Parson J.M., Siska P.E., Lee Y.T. (1972). J. Chem. Phys. 56:1511

    ADS  Google Scholar 

  14. Maitland G.C. and Smith E.B., Proc. 7th Symp. Thermophys. Props. (Amer. Soc. Mech. Eng., 1977), pp. 412–420.

  15. Maitland G.C., Smith E.B. (1973). Chem. Soc. Rev. 2:181

    Google Scholar 

  16. Boyes S.J. (1994). Chem. Phys. Lett. 5-6:221

    Google Scholar 

  17. Clifford A.A., Fleeter R.D., Kestin J., Wakeham W.A. (1979). Physica 98:467

    Google Scholar 

  18. Assael M.J., Dix M., Lucas A., Wakeham W.A. (1981). J. Chem Soc.: Faraday Trans. I 77:439

    Google Scholar 

  19. Najafi B., Mason E.A., Kestin J. (1983). Physica A 119:387

    ADS  Google Scholar 

  20. Kestin J., Ro S.T., Wakeham W.A. (1972). Physica 58:165

    ADS  Google Scholar 

  21. Kestin J., Ro S.T., Wakeham W.A. (1972). J. Chem. Phys. 56:4119

    ADS  Google Scholar 

  22. Kestin J., Wakeham W.A., Watanabe K. (1970). J. Chem. Phys. 53:3773

    ADS  Google Scholar 

  23. Kestin J., Ro S.T., Wakeham W.A. (192). J. Chem. Phys. 56:4086

    Google Scholar 

  24. Kestin J., Ro S.T., Wakeham W.A. (1972). J. Chem. Phys. 56:4036

    ADS  Google Scholar 

  25. Kestin J., Ro S.T., Wakeham W.A. (1972). Physica 58:165

    ADS  Google Scholar 

  26. Haarman J.W., Ph. D. Thesis (Technische Hogeschool Delft, Netherlands, 1969).

  27. Wakeham W.A., Zalaf M. (1986). Physica 139:105

    Google Scholar 

  28. Dix M., Wakeham W.A., Zalaf M. (1988). Thermal Conductivity 20, H D.P.. Hasselman, ed. Plenum, New York

    Google Scholar 

  29. Assael M.J., Charitidou E., Georgiadis G.P., Wakeham W.A. (1988). Ber. Bunsen-Ges. Phys. Chem. 92:627

    Google Scholar 

  30. Haran E.N., Wakeham W.A. (1982). J. Phys. E 15:839

    ADS  Google Scholar 

  31. Menashe J., Wakeham W.A. (1981). Ber. Bunsenges. Phys. Chem. 85:340

    Google Scholar 

  32. Haran E.N., Wakeham W.A. (1982). J. Phys. E 15:839

    ADS  Google Scholar 

  33. Assael M.J., C. A. Nieto de Castro, Roder H.M., and Wakeham W.A., in Experimental Thermodynamics, Vol. III, Measurement of the Transport Properties of Fluids, Wakeham W.A., A. Nagashima, and Sengers J.V., eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, UK, 1991), Chap. 7, pp. 163–194.

  34. Mason E.A., Monchick L. (1962). J. Chem. Phys. 36:1622

    ADS  Google Scholar 

  35. Monchick L., Pereira A.N.G., Mason E.A. (1965). J. Chem. Phys. 42:3241

    ADS  Google Scholar 

  36. Kestin J., Khalifa H.E., Wakeham W.A. (1977). J. Chem. Phys. 67:4254

    ADS  Google Scholar 

  37. Kestin J., Ro S.T., Wakeham W.A. (1971). Trans. Faraday. Soc. 67:2308

    Google Scholar 

  38. Kestin J., Paul R., Clifford A.A., Wakeham W.A. (1980). Physica 100A:349

    Google Scholar 

  39. Assael M.J., Dix M., Lucas A., Wakeham W.A. (1981). J. Chem. Soc. Faraday Trans. 77:439

    Google Scholar 

  40. Swindells J.F., Coe J.R., Godfrey T.B. (1952). J. Res. Nat. Bur. Stds. 48:1

    Google Scholar 

  41. ISO/TR 3666, Viscosity of Water (1998).

  42. Vesovic V., Wakeham W.A. (1986). J. Phys. Chem. Ref Data 15:1073

    Article  ADS  Google Scholar 

  43. Vesovic V., Wakeham W.A. (1989). Chem. Eng. Sci. 44:2181

    Google Scholar 

  44. Hellemans J.M., Kestin J., Ro S.T. (1973). Physica 65:376

    ADS  Google Scholar 

  45. Kestin J., Ro S.T., Wakeham W.A. (1974). Ber. Bunsen-Ges. Phys. Chem. 78:20

    Google Scholar 

  46. Kestin J., Wakeham W.A. (1988) Transport Properties of Fluids: Thermal Conductivity, Viscosity and Diffusion Coefficient. Hemisphere/CINDAS, New York

    Google Scholar 

  47. McLaughlin U.A.T., Rigby M., Vesovic V., Wakeham W.A. (1986). Mol. Phys. 59:579

    ADS  Google Scholar 

  48. Kestin J., Khalifa E.H., Wakeham W.A. (1976). J. Chem. Phys. 65:5186

    ADS  Google Scholar 

  49. Vesovic V., Wakeham W.A. (1991). High Temp.-High Press. 23:179

    Google Scholar 

  50. Vesovic V., Wakeham W.A. (1993). Physica A 201:501

    ADS  Google Scholar 

  51. Vesovic V., Wakeham W.A. (1994). High Temp.-High Press. 26:187

    Google Scholar 

  52. Ripple D.C., Defibaugh D.R., Gillis K.A., and Moldover M.R., in TEMPMEKO ‘99, Proc. II 7th Int. Symp. Temp. Therm. Meas. Ind. Sci., J. Dubbeldam and M. de Groot, eds. (NMI van Swinden Laboratorium, Delft, Netherlands, 1999), p. 418.

  53. Benedetto G., Gavioso R.M., Spagnolo R., Marcarino P., Merlone A. (2004). Metrologia 41:74

    ADS  Google Scholar 

  54. Pitre L., Moldover M.R., Tew W.L. (2006). Metrologia 43:142

    ADS  Google Scholar 

  55. A.R.H. Goodwin and J. P. M Trusler, in Experimental Thermodynamics, Vol. VI, Measurement of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, Marsh K.N., and Wakeham W.A., eds. (Elsevier for International Union of Pure and Applied Chemistry, Amsterdam, 2003), Chap. 6, pp. 208–225.

  56. Fujii K. (2004). Metrologia 41:S1

    ADS  Google Scholar 

  57. K. Fujii, in Experimental Thermodynamics, Vol. VI, Measurement of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, Marsh K.N., and Wakeham W.A., eds. (Elsevier for International Union of Pure and Applied Chemistry, Amsterdam, 2003), Chap. 5, pp. 191–208.

  58. Kuramoto N., Fujii K., Waseda A. (2004). Metrologia 41:S84

    ADS  Google Scholar 

  59. W. Wagner, R. Kleinrahm, H. W. Lösch, and J. T. R. Watson, in Experimental Thermodynamics, Vol. VI, Measurement of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, Marsh K.N., and Wakeham W.A., eds. (Elsevier for International Union of Pure and Applied Chemistry, Amsterdam, 2003), Chap. 5, pp. 127–235.

  60. Wagner W., Kleinrahm R. (2004). Metrologia 41:S24

    ADS  Google Scholar 

  61. R. Kleinrahm and W. Wagner, Entwicklung und Aufbau einer Dichtemeßanlage zur Messung der Siede—und Taudichten reiner fluider Stoffe auf der gesamten Phasengrenzkurve., Fortschr.-Ber. VDI, Reihe 3 (VDI-Verlag, Düsseldorf, 1984), Nr. 92.

  62. Kleinrahm R. Wagner W. (1986). J. Chem. Thermodyn. 18:739

    Google Scholar 

  63. Clark J.W. (1947). Rev. Sci. Instrum. 18:915

    ADS  Google Scholar 

  64. Th. Gast, in Vacuum Microbalance Techniques, Behrndt K.H., ed. (Plenum Press, New York, 1963), Vol. 3, p. 45.

  65. Gast Th. (1967). Acta Imeko 4:159

    Google Scholar 

  66. H. W. Lösch, Entwicklung und Aufbau von neuen Magnetschwebewaagen zur berührungsfreien Messung vertikaler Kräfte, Fortschr.-Ber. VDI, Reihe 3 (VDI-Verlag, Düsseldorf, 1987), Nr. 138.

  67. Lösch H.W., Kleinrahm R., Wagner W. (1994). Chem.-Ing.-Tech. 66:1055

    Google Scholar 

  68. H. W. Lösch, R. Kleinrahm, and W. Wagner, Jahrbuch 1994: Verfahrenstechnik und Chemieingenieurwesen (VDI-Verlag, Düsseldorf, 1994), p.117.

  69. Nowak P., Kleinrahm R., Wagner W. (1997). J. Chem. Thermodyn. 29:1137

    Google Scholar 

  70. Vogel E., Bastubbe E., Rohde S. (1984). Wiss. Z. Univ. Rostock-Naturw. Reihe. 33:34

    Google Scholar 

  71. Vogel E. (1972). Wiss. Z. Univ. Rostock 21:169

    Google Scholar 

  72. Vogel E., Bicj E., Nimz R. (1986). Physica 139A:46

    Google Scholar 

  73. Vogel E., Holdt B., Strehlow T. (1988). Physica 148A:46

    Google Scholar 

  74. Strehlow T., Vogel E. (1989). Physica 161A:101

    Google Scholar 

  75. Kobayashi K., Nagashima A. (1985). High Temp.-High Press. 17:131

    Google Scholar 

  76. Assael M.J., Polimatidou S., Wakeham W.A. (1993). Int. J. Thermophys. 14:795

    Google Scholar 

  77. Stokes G.G. (1901) Mathematical and Physical Papers. Cambridge University Press

  78. Pádua A.A.H., Fareleira J.M.N.A., Calado J.C.G., Wakeham W.A. (1996). J. Chem. Eng. Data 41:731

    Google Scholar 

  79. Pádua A.A.H., Fareleira J.M.N.A., Calado J.C.G., Wakeham W.A. (1996). Int. J. Thermophys. 17:781

    Google Scholar 

  80. Caudwell D.R., Trusler J.P.M., Vesovic V., Wakeham W.A. (2004). Int. J. Thermophys. 25:1339

    Google Scholar 

  81. Enskog D. (1922). Kungl. Svenska. Vet.-Ak. Handl. 63:4

    Google Scholar 

  82. Dymond J.H. and Assael M.J., in Transport Properties of Fluids: Their Correlation, Prediction and Estimation, J. Millat, Dymond J.H., and Nieto C.A. de Castro, eds. (Cambridge University Press for International Union of Pure and Applied Chemistry, Cambridge, UK, 1996), Chap. 10, pp. 226–249.

  83. Assael M.J., Trusler J.P.M., Tsolakis T.F. (1996) Thermophysical Properties of Fluids: An Introduction to their Prediction. Imperial College Press, London

    Google Scholar 

  84. Dymond J.H., Brawn T.A., Proc. 7th Symp. Thermophys. Props. (Amer. Soc. Mech. Eng., 1977), pp. 660–667.

  85. Wakeham W.A. (1998). Thermal Sci. Eng. 6:53

    Google Scholar 

  86. V. Majer and A. A. H. Pádua, in Experimental Thermodynamics, Vol. VI, Measurement of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, Marsh K.N., and Wakeham W.A., eds. (Elsevier for International Union of Pure and Applied Chemistry, Amsterdam, 2003), Chap. 5, pp. 158–168.

  87. Stansfeld J.W., in Experimental Thermodynamics, Vol. VI, Measurement of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, Marsh K.N., and Wakeham W.A., eds. (Elsevier for International Union of Pure and Applied Chemistry, Amsterdam, 2003), Chap. 5, pp 208–225.

  88. “Scope and Editorial Policy,”J. Chem. Eng. Data 51:9A (2006).

  89. Becker H., Grigull U. (1978). Waerme Stoffuebertrag Thermo Fluid Dyn. 11:9

    ADS  Google Scholar 

  90. Michels A.C., R. De Bruijn, Karapantsios T.D., R. J. J. van Diest, H. R. van den Berg, B. van Deenen, Sakanidou E.P., Wakeham W.A., J. P. M. Trusler, A. Louis, M. Papadaki, and J. Straub, presented at 9th Eur. Symp. Gravity-Dependent Phenomena, Berlin (1995).

  91. Michels A.C., R. de Bruijn, Karapantsios T.D., R. J. J. van Diest, van H.R. den Berg, B. van Deenen, Sakonidou E.P., Wakeham W.A., J. P. M. Trusler, A. Louis, M. Papadaki, and J. Straub, Proc. Nat. Heat Transfer Conf., Portland, Oregon, (ASME, New York, 1995), Vol. 3, p. 137.

  92. Shaumeyer J.N., Gammon R.W., Sengers J.V., and Y. Nagasaka, in Experimental Thermodynamics, Vol. III, Measurement of the Transport Properties of Fluids, Wakeham W.A., A. Nagashima, and Sengers J.V., eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, UK, 1991), Chap. 8, pp. 197–213.

  93. Y. Nagasaka, in Experimental Thermodynamics, Vol. III, Measurement of the Transport Properties of Fluids, Wakeham W.A., A. Nagashima, and Sengers J.V., eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, UK, 1991), Chap. 8, pp. 213–223

  94. Nagasaka Y. Nagashima A. (1988). Int. J. Thermophys. 9:923

    Google Scholar 

  95. Fröba A.P., Leipertz A. (2003). Int. J. Thermophys. 24:895

    Google Scholar 

  96. Michels A., Sengers J.V., van der Gulik P.S. (1962). Physica 28:1201

    ADS  Google Scholar 

  97. Law B.M., Gammon R.W., and Sengers J.V., OSA Proc. Photon Correlation Techniques and Applications, Abbiss J.B. and Smart A.E., eds. (Optical Society of America, Washington, DC, 1988), Vol. 1, p. 147.

  98. Burstyn H.C., Sengers J.V. (1982). Phys. Rev. A 25:448

    ADS  Google Scholar 

  99. Law B.M., Gammon R.W., Sengers J.V. (1988). Phys. Rev. Lett. 60:1554

    ADS  Google Scholar 

  100. Diller D.E., Aragon A.S., Laesecke A. (1993). Fluid Phase Equilib. 88:251

    Google Scholar 

  101. Shankland I.R., Basu R.S., and Wilson D.P., Proc. MEEET IIR, COMM. B1, B2, E1, E2, Purdue Univ., West Lafayette, Indiana (1988), p. 305.

  102. Kumagai A., Takahashi S. (1991). Int. J. Thermophys. 12:105

    Google Scholar 

  103. Oliveira C.M.B.P., Wakeham W.A. (1995). High Temp.-High Press. 27-28:91

    Google Scholar 

  104. Assael M.J., Nagasaka Y., Nieto de Castro C.A., Perkins R.A., Ström K., Vogel E., Wakeham W.A. (1995). Int. J. Thermophys. 16:63

    Google Scholar 

  105. Assael M.J., Wakeham W.A. (1995). Int. J. Refrig. 18:355

    Google Scholar 

  106. Caetano F.J.P., Fareleira J.M.N.A., Oliveira C.M.B.P., Wakeham W.A. (2005). J. Chem. Eng. Data 50:201

    Google Scholar 

  107. F. J. P. Caetano, J. M. N. A. Fareleira, A. P. Fröba, Harris K.R., A. Leipertz, C. M. B. P. Oliveira, and Wakeham W.A., presented at 16th Symp. Thermophys. Props., Boulder, Colorado (July 30 to August 4, 2006).

  108. Roy R.F., Beck A.E., and Touloukian Y.S., Physical Properties of Rocks and Minerals, CINDAS Data Series on Material Properties, Vol. II(2) (1989), pp. 409–502.

  109. Gehlhoff G., Neumeier F. (1919). Verhandl. Deut. Physik. Ges. 21:201

    Google Scholar 

  110. V. Peralta-Martinez, Ph. D. Thesis (Imperial College, London, UK, 2000).

  111. Peralta-Martinez M.V., Wakeham W.A. (2001). Int. J. Thermophys. 22:395

    Google Scholar 

  112. Vel’tishcheva V.A., Kalakutskaya N.A., Nikol’skii N.A.(1958). Teploenergetika 5:80

    Google Scholar 

  113. Hall W.C. (1938). Physica Rev. 2:1004

    ADS  Google Scholar 

  114. Hall W.C., Ph. D. Thesis (Univ. Kansas, Lawrence, Kansas, 1936).

  115. G. Meneaxidis, Ph. D. Thesis (Univ. Pierre et Marie Curie, Paris, 1979).

  116. Powell R.W., Tye R.P. (1961). International Developments in Heat Transfer, ASME 103:856

    Google Scholar 

  117. Vukalovich M.P., Ivanov A.I., Fokin L.R., and Yakovlev A.T., Thermophysicial Properties of Mercury, Monograph No. 9 (State Committee for Standards at the Board of Minister of the Soviet Union, Moscow, 1971), p. 203

  118. Prabhuram S.M.P. (1982). Ind. Eng. Chem. Fundam. 21:484

    Google Scholar 

  119. Ewing C.T., Seevold R.E., Grand J.A., Miller R.R. (1995). J. Phys. Chem. 59:529

    Google Scholar 

  120. Duggin M.J. (1968). Phys. Lett. A 27:257

    ADS  Google Scholar 

  121. Grosse A.V. (1966). J. Inorg. Nucl. Chem. 28:803

    Google Scholar 

  122. Bush G., Guntherodt H.J., Wyssmann P. (1972). Physica Lett. A 41:29

    ADS  Google Scholar 

  123. Ho C.Y., Powell R.W., Liley P.E. (1974). J. Phys. Chem. Ref. Data 3:1

    Article  Google Scholar 

  124. Peralta-Martinez M.V., Assael M.J., Dix M., Karagiannidis L., Wakeham W.A. (2006). Int. J. Thermophys. 27:353

    Google Scholar 

  125. J. Bilek, Sensors for Thermal Conductivity at High Temperatures (Ph. D. Thesis, University of Southampton, UK, 2006).

  126. Bilek J., Atkinson J.K., Wakeham W.A. (2006). Int. J. Thermophys. 27:92

    Google Scholar 

  127. J. Bilek, Atkinson J.K., and Wakeham W.A., Proc. EuroSimE, (Berlin, 2005), pp. 134–138.

  128. Wakeham W.A., Peralta-Martinez V. (2001). J. Chem. Thermodyn. 33:1623

    Google Scholar 

  129. J. Bilek, Atkinson J.K., and Wakeham W.A., Int. J. Thermophys. (in press, DOI : 10.1007/s10765-006-0124-4).

  130. Sklyarchuk V., Plevachuk Yu. (2005). Meas. Sci. Technol. 12:467

    ADS  Google Scholar 

  131. Yamasue E., Susa M., Fukuyama H., Nagata K. (2003). Int. J. Thermophys. 24:713

    Google Scholar 

  132. Peralta-Martinez M.V., Wakeham W.A. (2001). Int. J. Thermophys. 22:395

    Google Scholar 

  133. Hemminger W. (1985). High Temp.-High Press. 17:465

    Google Scholar 

  134. Ho C.Y., Powell R.W., Liley P.E. (1972). J. Phys. Chem. Ref. Data 1:279

    Article  Google Scholar 

  135. Mills K.C., Monaghan B.J., Keene B.J. (1996). Int. Mat. Rev. 41:209

    Google Scholar 

  136. Wiedemann G., Franz R. (1853). Ann. Physick 2 89:497

    Google Scholar 

  137. M. Hiza, J. Nighswander, and A. Kurkjian, in Experimental Thermodynamics, Vol. VI, Measurement of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, K. N. Marsh, and W. A. Wakeham, eds. (Elsevier for International Union of Pure and Applied Chemistry, Amsterdam, 2003), Chap. 4.

  138. J. F. Johnson, J. R. Martin, and R. S. Porter, Physical Methods of Chemistry, Pt. VI, A. L. Weissberger and B. W. Rossiter, eds. (Interscience, New York, 1977), p. 63.

  139. W. Künzel, H. F. van Wijk, and K. N. Marsh, in Recommended Reference Materials for the Realization of Physicochemical Properties, K. N. Marsh, ed. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, UK, 1987), pp. 45–72.

  140. J. C. Nieuwoudt and I. R. Shankland, in Experimental Thermodynamics, Vol. III, Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, UK, 1991), Chap. 2, pp. 9–48.

  141. M. Kawata, K. Kurase, A. Nagashima, and K. Yoshida, in Experimental Thermodynamics, Vol. III, Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, UK, 1991), Chap. 3, pp. 51–75.

  142. M. Kawata, K. Kurase, A. Nagashima, K. Yoshida, and J. D. Isdale, in Experimental Thermodynamics, Vol. III, Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry: Oxford, UK, 1991), Chap. 5, pp. 97–110.

  143. D. E. Diller and P. S. van der Gulik, in Experimental Thermodynamics, Vol. III, Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific for International Union of Pure and Applied Chemistry, Oxford, UK, 1991), Chap. 4, pp. 79–94.

  144. Lundstrum R., Goodwin A.R.H., Hsu K., Frels M., Caudwell D.R., Trusler J.P.M., Marsh K.N. (2005). J. Chem. Eng. Data 50:1377

    Google Scholar 

  145. Sopkow T., Goodwin A.R.H., Hsu K. (2005). J. Chem. Eng. Data 50:1732

    Google Scholar 

  146. C. Harrison, M. Sullivan, S. N. Godefroy, N. Matsumoto, A. R. H. Goodwin, and K. Hsu, J. Chem. Eng. Data DOI: 10.1021/je0603980.

  147. Goodwin A.R.H., Donzier E.P., Vancauwenberghe O., Fitt A.D., Ronaldson K.A., Wakeham W.A., Manrique de Lara M., Marty F., Mercier B. (2006). J. Chem. Eng. Data 51:190

    Google Scholar 

  148. Donzier E., Lefort O., Spirkovitvh S., Baillieu F. (1991). Sens. Actuators A 25–27:357

    Google Scholar 

  149. Span R., Wagner W. (2003). Int. J. Thermophys. 24:41

    Google Scholar 

  150. D. R. Caudwell, Viscosity of Dense Fluid Mixtures (Ph. D. Thesis, University of London, 2004).

  151. Dymond J.H., Robertson J., Isdale J.D. (1981). Int. J. Thermophys. 2:133

    Google Scholar 

  152. Felsing W.A., Watson G.M. (1942). J. Am. Chem. Soc. 64:1822

    Google Scholar 

  153. Dix M., Fareleira J.M.N.A., Takaishi Y., Wakeham W.A. (1991). Int. J. Thermophys. 12:357

    Google Scholar 

  154. Dymond J.H., Robertson J., Isdale J.D. (1982). J. Chem. Thermodyn. 14:51

    Google Scholar 

  155. Sagdeev D.I., Mukhamedzyanov G.Kh. (1977). Teplo-Massoobmen Khim.Tekhnol. 5:21

    Google Scholar 

  156. Kiran E., Sen Y.L. (1992). Int. J. Thermophys. 13:411

    Google Scholar 

  157. Scaife W.G.S., Lyons C.G.R. (1980). Proc. R. Soc. London, Ser. A 370:193

    Article  ADS  Google Scholar 

  158. Banipal T.S., Garg S.K., Ahluwalia J.C. (1991). J. Chem. Thermodyn. 23:923

    Google Scholar 

  159. R. Span, Multiparameter Equations of State: An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000), pp. 247, 248, 255.

  160. Huber M.L., Laesecke A., Xiang H.W. (2004). Fluid Phase Equilib. 224:263

    Google Scholar 

  161. Oliveira C.M.B.P., Wakeham W.A. (1992). Int. J. Thermophys. 13:773

    Google Scholar 

  162. Agaev N.A., Golubev I.F. (1963). Gazovaia Promyshlennost 8:50

    Google Scholar 

  163. Jakeways C.V., Goodwin A.R.H. (2005). J. Chem. Thermodyn. 37:1093

    Google Scholar 

  164. Cannon M.R. (1944). Ind Eng. Chem. 16:708

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Wakeham.

Additional information

Invited paper presented as the Keynote Lecture at THERMO International 2006, July 31, 2006, University of Colorado, Boulder, Colorado, U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakeham, W.A., Assael, M.A., Atkinson, J.K. et al. Thermophysical Property Measurements: The Journey from Accuracy to Fitness for Purpose. Int J Thermophys 28, 372–416 (2007). https://doi.org/10.1007/s10765-007-0189-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0189-8

Keywords

Navigation