Skip to main content
Log in

Adding a Tuneable Response to a Terahertz Metasurface Using a Graphene Thin Film

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Tuneable terahertz devices are pivotal for the next-generation high-speed wireless communications and sensing technologies. The development of these devices is in its infancy, as significant challenges exist in fabricating terahertz electronics that possess tuneability while maintaining an ultrafast electrical response. In this work, a graphene film is employed as a tuneable conductive ground plate for a gold terahertz metasurface. In this way, a tuning functionality is added to the otherwise non-tuneable metasurface. Using this approach, a proof-of-concept THz transmission modulator is designed, modelled, and experimentally fabricated. The experimental device output is consistent with the simulation. Electrical bias connections are made laterally on the graphene ground, simplifying the fabrication process. This delivers a new and simple approach of adding a tuning functionality to a wide range of terahertz devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author(s) upon reasonable request.

References

  1. T. Nagatsuma, G. Ducournau, and C. C. Renaud, "Advances in terahertz communications accelerated by photonics," Nat. Photonics., 10, 6, 371-379, 2016.

    Article  Google Scholar 

  2. M. Hasan, S. Arezoomandan, H. Condori, and B. Sensale-Rodriguez, "Graphene terahertz devices for communications applications," Nano Communication Networks, vol. 10, pp. 68-78, 2016. https://doi.org/10.1016/j.nancom.2016.07.011.

    Article  Google Scholar 

  3. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics., vol. 1, no. 2, pp. 97-105, 2007. https://doi.org/10.1038/nphoton.2007.3.

    Article  Google Scholar 

  4. S. W. Qu, H. Yi, B. J. Chen, K. B. Ng, and C. H. Chan, "Terahertz Reflecting and Transmitting Metasurfaces," Proc. IEEE, vol. 105, no. 6, pp. 1166-1184, 2017. https://doi.org/10.1109/JPROC.2017.2688319.

    Article  Google Scholar 

  5. K. Delfanazari, R. A. Klemm, H. J. Joyce, D. A. Ritchie, and K. Kadowaki, "Integrated, Portable, Tunable, and Coherent Terahertz Sources and Sensitive Detectors Based on Layered Superconductors," Proc. IEEE, vol. 108, no. 5, pp. 721-734, 2020. https://doi.org/10.1109/JPROC.2019.2958810.

    Article  Google Scholar 

  6. H. Zeng et al., "High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip," Nat. Photonics., vol. 15, no. 10, pp. 751-757, 2021. https://doi.org/10.1038/s41566-021-00851-6.

    Article  Google Scholar 

  7. M. Rahm, J.-S. Li, and W. J. Padilla, "THz Wave Modulators: A Brief Review on Different Modulation Techniques," J. Infrared, Millimeter, Terahertz Waves, vol. 34, no. 1, pp. 1-27, 2013. https://doi.org/10.1007/s10762-012-9946-2.

    Article  Google Scholar 

  8. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, "Liquid crystal based electrically switchable Bragg structure for THz waves," Opt. Express, vol. 17, no. 9, pp. 7377-7382, 2009. https://doi.org/10.1364/OE.17.007377.

    Article  Google Scholar 

  9. H. Park et al., "Evaluating liquid crystal properties for use in terahertz devices," Opt. Express, vol. 20, no. 11, pp. 11899-11905, 2012. https://doi.org/10.1364/OE.20.011899.

    Article  Google Scholar 

  10. J. Yang et al., "Electrically tunable liquid crystal terahertz device based on double-layer plasmonic metamaterial," Opt. Express, vol. 27, no. 19, pp. 27039-27045, 2019. https://doi.org/10.1364/OE.27.027039.

    Article  Google Scholar 

  11. P. Tassin, T. Koschny, and C. M. Soukoulis, "Graphene for Terahertz Applications," Science, vol. 341, no. 6146, pp. 620-621, 2013. https://doi.org/10.1126/science.1242253.

    Article  Google Scholar 

  12. K. S. Novoselov et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, pp. 666-669, 2004. https://doi.org/10.1126/science.1102896.

    Article  Google Scholar 

  13. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., vol. 81, pp. 109–162, 2009. https://doi.org/10.1103/RevModPhys.81.109.

    Article  Google Scholar 

  14. X. Li et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, no. 5932, pp. 1312-1314, 2009. https://doi.org/10.1126/science.1171245.

    Article  Google Scholar 

  15. K. S. Novoselov et al., "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, no. 7065, pp. 197-200, 2005. https://doi.org/10.1038/nature04233.

    Article  Google Scholar 

  16. A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater., vol. 6, no. 3, pp. 183-191, 2007. https://doi.org/10.1038/nmat1849.

    Article  Google Scholar 

  17. P. Gopalan and B. Sensale-Rodriguez, "2D Materials for Terahertz Modulation," Adv. Opt. Mater, vol. 8, no. 3, p. 1900550, 2020. https://doi.org/10.1002/adom.201900550.

    Article  Google Scholar 

  18. S. Kalhor et al., "Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits," Nanomaterials, vol. 11, no. 11, p. 2999, 2021.

    Article  Google Scholar 

  19. B. Sensale-Rodriguez et al., "Broadband graphene terahertz modulators enabled by intraband transitions," Nat. Commun., vol. 3, p. 780, 2012.

    Article  Google Scholar 

  20. B. Sensale-Rodriguez et al., "Extraordinary Control of Terahertz Beam Reflectance in Graphene Electro-absorption Modulators," Nano Lett., vol. 12, no. 9, pp. 4518-4522, 2012.

    Article  Google Scholar 

  21. Z. Chen et al., "Graphene controlled Brewster angle device for ultra broadband terahertz modulation," Nat. Commun., vol. 9, no. 1, p. 4909, 2018.

    Article  Google Scholar 

  22. D. Zhou et al., "A high-performance terahertz modulator based on double-layer graphene," Opt. Commun., vol. 427, pp. 215-219, 2018. https://doi.org/10.1016/j.optcom.2018.06.060

    Article  Google Scholar 

  23. E. Kaya, N. Kakenov, H. Altan, C. Kocabas, and O. Esenturk, "Multilayer Graphene Broadband Terahertz Modulators with Flexible Substrate," J. Infrared, Millimeter, Terahertz Waves, vol. 39, no. 5, pp. 483–491, 2018. https://doi.org/10.1007/s10762-018-0480-8.

    Article  Google Scholar 

  24. Y. Wu et al., "Graphene Terahertz Modulators by Ionic Liquid Gating," Adv. Mater., vol. 27, no. 11, pp. 1874-1879, 2015. https://doi.org/10.1002/adma.201405251.

    Article  Google Scholar 

  25. X. Chen et al., "Hysteretic behavior in ion gel-graphene hybrid terahertz modulator," Carbon, vol. 155, pp. 514–520, 2019. https://doi.org/10.1016/j.carbon.2019.09.007.

    Article  Google Scholar 

  26. R. Degl’Innocenti et al., "Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene," ACS Nano, vol. 8, no. 3, pp. 2548-2554, 2014.

    Article  Google Scholar 

  27. S. J. Kindness et al., "A Terahertz Chiral Metamaterial Modulator," Adv. Opt. Mater, vol. 8, no. 21, p. 2000581, 2020. https://doi.org/10.1002/adom.202000581.

    Article  Google Scholar 

  28. A. Di Gaspare et al., "Tunable, Grating-Gated, Graphene-On-Polyimide Terahertz Modulators," Adv. Funct. Mater., vol. 31, no. 10, p. 2008039, 2021. https://doi.org/10.1002/adfm.202008039.

    Article  Google Scholar 

  29. G. Liang et al., "Integrated Terahertz Graphene Modulator with 100% Modulation Depth," ACS Photonics, vol. 2, no. 11, pp. 1559-1566, 2015. https://doi.org/10.1021/acsphotonics.5b00317.

    Article  Google Scholar 

  30. S. J. Kindness et al., "Graphene-Integrated Metamaterial Device for All-Electrical Polarization Control of Terahertz Quantum Cascade Lasers," ACS Photonics, vol. 6, no. 6, pp. 1547-1555, 2019. https://doi.org/10.1021/acsphotonics.9b00411.

    Article  Google Scholar 

  31. J. S. Gómez-Díaz et al., "Self-biased reconfigurable graphene stacks for terahertz plasmonics," Nat. Commun., vol. 6, p. 6334, 2015.

    Article  Google Scholar 

  32. Y. H. Lee, J. Cardenas, M. Lipson, and C. T. Phare, "Graphene electro-optic modulator with 30GHz bandwidth," Nat. Photonics., vol. 9, no. 8, pp. 511–514, 2015.

    Article  Google Scholar 

  33. L. Ju et al., "Graphene plasmonics for tunable terahertz metamaterials," Nature Nanotechnology, vol. 6, p. 630, 2011. https://doi.org/10.1038/nnano.2011.146.

    Article  Google Scholar 

  34. H. Lin et al., "Contactless graphene conductivity mapping on a wide range of substrates with terahertz time-domain reflection spectroscopy," Scientific Reports, vol. 7, no. 1, p. 10625, 2017. https://doi.org/10.1038/s41598-017-09809-7.

    Article  Google Scholar 

  35. N. Kakenov, M. S. Ergoktas, O. Balci, and C. Kocabas, "Graphene based terahertz phase modulators," 2D Mater., vol. 5, no. 3, p. 035018, 2018.

    Article  Google Scholar 

  36. D. Correas-Serrano and J. S. Gómez-Díaz, "Graphene-based Antennas for Terahertz Systems: A Review," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), ArXiv e-prints, 2017.

  37. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, "Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials," Carbon, vol. 126, pp. 271-278, 2018. https://doi.org/10.1016/j.carbon.2017.10.035.

    Article  Google Scholar 

  38. Y. Yin, Z. Cheng, L. Wang, K. Jin, and W. Wang, "Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity and lattice energy," Scientific Reports, vol. 4, no. 1, p. 5758, 2014. https://doi.org/10.1038/srep05758.

    Article  Google Scholar 

  39. D. H. Seo et al., "Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor," Nat. Commun., vol. 8, no. 1, p. 14217, 2017.

    Article  Google Scholar 

  40. P. Bøggild et al., "Mapping the electrical properties of large-area graphene," 2D Mater., vol. 4, no. 4, p. 042003, 2017.

    Article  Google Scholar 

  41. Y. L. He et al., "Flexible terahertz modulators based on graphene FET with organic high-k dielectric layer," Materials Research Express, vol. 5, no. 11, p. 115607, 2018.

    Article  Google Scholar 

  42. A. A. Generalov, M. A. Andersson, X. Yang, A. Vorobiev, and J. Stake, "A 400-GHz Graphene FET Detector," IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 5, pp. 614-616, 2017. https://doi.org/10.1109/TTHZ.2017.2722360.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge and thank Dr. Krunal Radhanpura for his assistance with the THz-TDS setup and measurement. We acknowledge Dr. Dong Han Seo, Dr. James Cooper, and Dr. Adrian Murdock for their helpful advice/discussion in developing the graphene synthesis process. The photomask used in this work was produced by the Research and Prototype Foundry Core Research Facility at the University of Sydney—part of the Australian National Fabrication Facility.

Author information

Authors and Affiliations

Authors

Contributions

A.S. fabricated the tuneable terahertz device. A.S. performed the device characterization and analysis. J. D. and Z. H. conceived the project idea. X.G. designed the device and performed the modelling with inputs from A.S. and J.D. X.G. provided the simulated data in Fig. 2. A.S. wrote the manuscript supported by X.G, J.D., Z. H., and T.V.D.L. A.S. prepared Figs. 17.

Corresponding author

Correspondence to Andrew Squires.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squires, A., Gao, X., van der Laan, T. et al. Adding a Tuneable Response to a Terahertz Metasurface Using a Graphene Thin Film. J Infrared Milli Terahz Waves 43, 806–818 (2022). https://doi.org/10.1007/s10762-022-00883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00883-1

Keywords

Navigation