Skip to main content
Log in

Double-Layer Slit Cavities for Wideband Frequency Tuning in Terahertz Gyrotrons

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We propose a new type of a gyrotron cavity comprising the external and internal cylindrical resonators with azimuthally periodical axial slits. A theory of such a cavity is presented together with the eigenmode computation, which confirms its high mode selectivity. In 3D simulations using the particle-in-cells method, we compare the output characteristics of 0.5 THz gyrotrons with 0.1 to 1 kW output power. We demonstrate that as compared to a conventional solid wall cavity, the use of the novel-type cavity allows the smooth frequency tuning band to be increased by an order of magnitude and more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D, Appl. Phys., 50, 4, 2017, Art. no. 043001, https://doi.org/10.1088/1361-6463/50/4/043001.

  2. M. Thumm, “State-of-the-art of high-power gyro-devices and free electron masers,” J Infrared Milli Terahz Waves, vol. 41, no. 1, pp. 1-140, Jan. 2020, https://doi.org/10.1007/s10762-019-00631-y.

    Article  MathSciNet  Google Scholar 

  3. S. Sabchevski, M. Glyavin, S. Mitsudo, Y. Tatematsu, T. Idehara, “Novel and Emerging Applications of the Gyrotrons Worldwide: Current Status and Prospects,” J Infrared Milli Terahz Waves, vol. 42, no. 7, pp. 715-721, (2021), https://doi.org/10.1007/s10762-021-00804-8

    Article  Google Scholar 

  4. M. Yu. Glyavin, G. G. Denisov, V. E. Zapevalov, M. A. Koshelev, M. Yu. Tretyakov, A. I. Tsvetkov, “High-power terahertz sources for spectroscopy and material diagnostics,” Physics-Uspekhi, vol. 59, no. 6, pp. 595-604, June 2016, https://doi.org/10.3367/UFNe.2016.02.037801

    Article  Google Scholar 

  5. G.G. Denisov, M.Y. Glyavin, A.E. Fedotov, I.V. Zotova, “Theoretical and Experimental Investigations of Terahertz-Range Gyrotrons with Frequency and Spectrum Control,” J Infrared Milli Terahz Waves, v. 41, no. 9, pp. 1131–1143, September 2020, https://doi.org/https://doi.org/10.1007/s10762-020-00672-8

    Article  Google Scholar 

  6. Y. Yamaguchi, T. Ogura, T. Ueyama, Y. Maeda, K. Takayama, J. Sasano, M. Fukunari, Y. Tatematsu, and T. Saito, “Super Multi-Frequency Oscillations at Fundamental Harmonics With a Complex Cavity Gyrotron,” IEEE Electron Device Letters, vol. 41, no. 8, pp. 1241-1244, Aug. 2020, https://doi.org/10.1109/LED.2020.3000640.

    Article  Google Scholar 

  7. C.-H. Tsai, T.-H. Chang, Y. Tatematsu, Y. Yamaguchi, M. Fukunari, T. Saito, and T. Idehara, “Reflective Gyrotron Backward-Wave Oscillator With Piecewise Frequency Tunability,” IEEE Transactions on Electron Devices, vol. 68, no. 1, pp. 324-329, Jan. 2021, https://doi.org/10.1109/TED.2020.3036323.

    Article  Google Scholar 

  8. A.L. Goldenberg, G.G. Denisov, V.E. Zapevalov, A. G. Litvak, V. A. Flyagin, “Cyclotron resonance masers: State of the art,” Radiophys. Quantum El., vol. 39, no. 6, pp. 423–446, June 1996, https://doi.org/10.1007/BF02122390.

    Article  Google Scholar 

  9. D. Liu, W. Wang, S. Qiao and Y. Yan, “Study of a Coaxial Gyrotron Cavity With Improved Mode Selection,” IEEE Trans. Electron Dev., vol. 60, no. 12, pp. 4248-4251, Dec. 2013, https://doi.org/10.1109/TED.2013.2284772

    Article  Google Scholar 

  10. V. I. Shcherbinin, Y. K. Moskvitina, K. A. Avramidis and J. Jelonnek, “Improved Mode Selection in Coaxial Cavities for Subterahertz Second-Harmonic Gyrotrons,” IEEE Trans. Electron Dev., vol. 67, no. 7, pp. 2933-2939, July 2020, https://doi.org/10.1109/TED.2020.2996179

    Article  Google Scholar 

  11. X. Yuan, Y. Lan, Y. Han, and Y. Yan, “Nonlinear theory for a terahertz gyrotron with a special cross-section interaction cavity,” Phys. Plasmas, 19, 5, art. no. 053107, 2012, https://doi.org/10.1063/1.4714755

  12. N. Nayek, M. K. Joshi, R. K. Sonkar, T. Tiwari and R. Bhattacharjee, “Design and Efficiency Enhancement of a Ka-Band Industrial Gyrotron,” IEEE Trans. Plasma Sci., vol. 48, no. 11, pp. 3807-3814, Nov. 2020, https://doi.org/10.1109/TPS.2020.302669

    Article  Google Scholar 

  13. I. V. Bandurkin, G. I. Kalynova, Y. K. Kalynov, I. V. Osharin, A. V. Savilov and D. Y. Shchegolkov, “Mode Selective Azimuthally Asymmetric Cavity for Terahertz Gyrotrons,” IEEE Trans. Electron Dev., vol. 68, no. 1, pp. 347-352, Jan. 2021, https://doi.org/10.1109/TED.2020.3039209

    Article  Google Scholar 

  14. J. R. Sirigiri, K. E. Kreischer, J. Machuzak, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, “Photonic-Band-Gap Resonator Gyrotron,” Phys. Rev. Lett., vol. 86, no. 24, pp. 5628–5631, 11 2001, https://doi.org/10.1103/PhysRevLett.86.5628

  15. Y. Zhang, S. Yu, L. Zhang, T. Zhang, Y. Yang and H. Li, “Analysis of the Photonic Bandgaps for Gyrotron Devices,” IEEE Trans. Plasma Sci., vol. 43, no. 4, pp. 1018-1023, April 2015, https://doi.org/10.1109/TPS.2015.2411286

    Article  Google Scholar 

  16. R. K. Singh and M. Thottappan, “Design and PIC Simulation Studies of Millimeter-Wave-Tunable Gyrotron Using Metal PBG Cavity as its RF Interaction Circuit,” IEEE Trans. Plasma Sci., vol. 48, no. 4, pp. 845-851, April 2020, https://doi.org/10.1109/TPS.2020.2974791

    Article  Google Scholar 

  17. M.A. Khozin, G.G. Denisov, S.V. Kuzikov, A.B. Pavelyev, “Multimirror quasi-cylindrical cavity resonators for frequency-tunable gyrotrons,” Radiophys. Quantum. El., vol. 53, no. 7, pp. 111-121, July 2010, https://doi.org/10.1007/s11141-010-9207-y

    Article  Google Scholar 

  18. G.S. Nusinovich, “To the theory of gyrotrons with confocal resonators,” Phys. Plasmas, vol. 26, no. 5, art.no. 053107, 2019, https://doi.org/10.1063/1.5099909

  19. W. Fu, X. Guan and Y. Yan, “Generating High-Power Continuous-Frequency Tunable Sub-Terahertz Radiation From a Quasi-Optical Gyrotron With Confocal Waveguide,” IEEE Electron Dev. Lett., vol. 41, no. 4, pp. 613-616, April 2020, https://doi.org/10.1109/LED.2020.2972380

    Article  Google Scholar 

  20. I.V. Zotova, N.S. Ginzburg, A.M. Malkin, V.Yu. Zaslavsky, I.V. Zheleznov, A.S. Sergeev, M.Yu. Glyavin, S. Mitsudo, Y. Tatemasu, T. Idehara, “Terahertz-Range High-Order Cyclotron Harmonic Planar Gyrotrons with Transverse Energy Extraction,” J Infrared Milli Terahz Waves, v.41, no.2, p.152-163, January 2020, https://doi.org/10.1007/s10762-019-00661-6

    Article  Google Scholar 

  21. R. M. Rozental, Y. Y. Danilov, A. N. Leontyev, A. M. Malkin, D. Y. Shchegolkov and V. P. Tarakanov, “Spatial Synchronization of TE-Modes in a Slit-Type Gyrotron Cavity,” in IEEE Transactions on Electron Devices, vol. 69, no. 3, pp. 1451-1456, March 2022, https://doi.org/10.1109/TED.2022.3146218.

    Article  Google Scholar 

  22. B.Z. Katsenelenbaum, “High-frequency Electrodynamics”. – WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006.

  23. G.G. Denisov, M.G. Reznikov, “Corrugated cylindrical resonators for short-wavelength relativistic microwave oscillators,” // Radiophys Quantum Electron, v. 25, no. 5, p. 407–413, 1982, https://doi.org/10.1007/BF01035315

  24. V.S. Ergakov, M.A. Moiseev, “Open cylindrical resonator with longitudinal channels in the wall,” // Radiophys Quantum Electron, v. 25, no. 4, p. 327–333, 1982, https://doi.org/10.1007/BF01034302

  25. Y. Y. Danilov, “Selective perforated exciter of the whispering-gallery mode of a barrel-shaped cavity,” Radiophys. Quantum El., vol. 54, no. 2, pp. 627-631, February 2012, https://doi.org/10.1007/s11141-012-9323-y

    Article  Google Scholar 

  26. Y. Y. Danilov, A. N. Leontyev, N. V. Leontyev, R. M. Rozental, V. P. Tarakanov, I. V. Zheleznov, and E. B. Abubakirov, “Slit-Type Cavities for Cyclotron Resonance Masers Operating at TM Modes,” IEEE Trans. Electron Dev., vol. 68, no. 4, pp. 2130-2132, April 2021, https://doi.org/10.1109/TED.2021.3055162

    Article  Google Scholar 

  27. A. F. Harvey. Microwave Engineering. London & New York, Academic Press, 1963.

    MATH  Google Scholar 

  28. R.B. Vaganov, R.F. Matveev, and V.V. Meriakri. Multiwave Waveguides with Random Discontinuities. Moscow, Soviet Radio, 1972 (in Russian).

    Google Scholar 

  29. C.L. Beattie. “Table of First 700 Zeros of Bessel Functions – Jl (x) and J′l(x)” // Bell System Technical Journal. 1958;37(3):689–97. https://doi.org/10.1002/j.1538-7305.1958.tb03881.x

  30. David A. Hill. Electromagnetic Fields in Cavities. Deterministic and Statistical Theories. – John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.

  31. G.S. Nusinovich. Introduction to the physics of gyrotrons. Baltimore, London, The John Hopkins Unversity Press, 2004.

    Google Scholar 

  32. S.A. Malygin, “Gyrotron resonators with a specified longitudinal distribution of microwave field,” // Radiophys. Quantum Electron., v. 24, no. 12, p. 1030–1034, December 1981, https://doi.org/10.1007/BF01034314

    Article  Google Scholar 

  33. G.I. Zarudneva, Y.K. Kalynov, and S.A. Malygin, “Radiation mode composition of open resonators in the form of axisymmetric, weakly irregular waveguides,” // Radiophys Quantum Electron, 31, 3, 254–257, 1988, https://doi.org/10.1007/BF01080388

  34. R. Pu, G.S. Nusinovich, O.V. Sinitsyn, and T.M. Antonsen Jr., “Effect of the thickness of electron beams on the gyrotron efficiency,” // Phys. Plasmas, 17, 8, art.no. 083105, 2010, https://doi.org/10.1063/1.3467036

  35. V.E. Zapevalov, S.Y. Kornishin, A.V. Kotov, et al., “System for the formation of an electron beam in a 258 GHz gyrotron designed for experiments on dynamic polarization of nuclei,” // Radiophys. Quantum El., v. 53, no. 10, p. 229–236, October 2010, https://doi.org/10.1007/s11141-010-9221-0

    Article  Google Scholar 

  36. A.N. Kuftin, V.N. Manuilov, “The Electron-Optical System of a Gyrotron with an Operating Frequency of 263 GHz for Spectroscopic Research,” // Radiophys. Quantum El., v. 59, no. 7, p. 130–136, July 2016, https://doi.org/10.1007/s11141-016-9682-x

    Article  Google Scholar 

  37. V.P. Tarakanov, “Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-field sensor, calorimeter etc.,” Proc. EPJ Web Conf., 2017, 149, art.no. 04024, https://doi.org/10.1051/epjconf/20171490

  38. A. V. Soane, M. A. Shapiro, S. Jawla and R. J. Temkin, “Operation of a 140-GHz Gyro-Amplifier Using a Dielectric-Loaded, Severless Confocal Waveguide,” in IEEE Transactions on Plasma Science, vol. 45, no. 10, pp. 2835-2840, Oct. 2017, https://doi.org/10.1109/TPS.2017.2740619.

    Article  Google Scholar 

  39. Luchinin A.G., Nusinovich G.S., “An analytical theory for comparing the efficiency of gyrotrons with various electrodynamic systems,” Int. J. Electron., vol.57, no.6, pp. 827-834, 1984, https://doi.org/10.1080/00207218408938970.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS) Project through the Program “Development of engineering, technology and scientific research in the field of atomic energy until 2024” under Grant 0030–2021-0027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Rozental.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozental, R.M., Danilov, Y.Y., Leontyev, A.N. et al. Double-Layer Slit Cavities for Wideband Frequency Tuning in Terahertz Gyrotrons. J Infrared Milli Terahz Waves 43, 654–669 (2022). https://doi.org/10.1007/s10762-022-00876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00876-0

Keywords

Navigation