Skip to main content
Log in

A Novel Complex Cavity for Second-Harmonic Subterahertz Gyrotrons: a Tradeoff Between Engineering Tolerance and Mode Selection

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Using a simplified approach, a self-consistent modeling of beam–wave interaction in a complex cavity is performed to evaluate the performance of the complex cavity second-harmonic 0.4-THz gyrotron developed at the University of Fukui. For this gyrotron, the quantitative analysis of an adverse effect of small manufacturing errors of the complex cavity on mode selection, output power, and output mode purity is done. To improve the robustness of gyrotron operation to manufacturing errors, a novel complex cavity formed by coupled smooth-walled and corrugated cylindrical resonators is considered. The novel cavity is a hybrid between conventional cylindrical and standard complex cavities and therefore offers the benefit of a tradeoff between engineering tolerance and mode selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data are available from the authors upon reasonable request.

Code Availability

Not applicable.

References

  1. M. Thumm, J. Infrared Millim. Terahertz Waves (2020) https://doi.org/10.1007/s10762-019-00631-y

    Article  Google Scholar 

  2. S. Sabchevski, M. Glyavin, S. Mitsudo, Y. Tatematsu, T. Idehara, J. Infrared Millim. Terahertz Waves (2021) https://doi.org/10.1007/s10762-021-00804-8

    Article  Google Scholar 

  3. T. Idehara, T. Tatsukawa, I. Ogawa, T. Mori, H. Tanabe, S. Wada, G. F. Brand, M. H. Brennan, Appl. Phys. Lett. (1991) https://doi.org/10.1063/1.105135

    Google Scholar 

  4. G.F. Brand, T. Idehara, T. Tatsukawa, I. Ogawa, Int. J. Electron. (1992) https://doi.org/10.1080/00207219208925612

    Article  Google Scholar 

  5. V.L. Bratman, A.E. Fedotov, T. Idehara, Int. J. Infrared Millim. Waves (2001) https://doi.org/10.1023/A:1015030405179

    Article  Google Scholar 

  6. S.H. Kao, C.C. Chiu, K.R. Chu, Phys. Plasmas (2012) https://doi.org/10.1063/1.3684663

    Google Scholar 

  7. A.C. Torrezan, S.T. Han, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, A.B. Barnes, R.G. Griffin, IEEE Trans. Plasma Sci. (2010) https://doi.org/10.1109/TPS.2010.2046617

    Article  Google Scholar 

  8. T. Idehara, K. Kosuga, L. Agusu, R. Ikeda, I. Ogawa, T. Saito, Y. Matsuki, K. Ueda, T. Fujiwara, Continuously frequency tunable high power sub-THz radiation source—gyrotron FU CW VI for 600 MHz DNP-NMR spectroscopy J. Infrared Millim. Terahertz Waves 31 (7), 775–790 (2010) https://doi.org/10.1007/s10762-010-9643-y

  9. A.C. Torrezan, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, R.G. Griffin, IEEE Trans. Electron Devices (2011) https://doi.org/10.1109/TED.2011.2148721

    Article  Google Scholar 

  10. T. Idehara, Y. Tatematsu, Y. Yamaguchi, E.M. Khutoryan, A.N. Kuleshov, K. Ueda, Y. Matsuki, T. Fujiwara, J. Infrared Millim. Terahertz Waves (2015) https://doi.org/10.1007/s10762-015-0150-z

    Article  Google Scholar 

  11. S K. Jawla, R.G. Griffin, I.A. Mastovsky, M.A. Shapiro, R.J. Temkin, IEEE Trans. Electron Devices (2020) https://doi.org/10.1109/TED.2019.2953658

    Article  Google Scholar 

  12. M.Yu. Glyavin, A.N. Kuftin, M.V. Morozkin, M.D. Proyavin, A.P. Fokin, A.V. Chirkov, V.N. Manuilov, A.S. Sedov, E.A. Soluyanova, D.I. Sobolev, E.M. Tai, A.I. Tsvetkov, A.G. Luchinin, S.Yu. Kornishin, G.G. Denisov, IEEE Electron Device Lett. (2021) https://doi.org/10.1109/LED.2021.3113022

    Article  Google Scholar 

  13. M.Y. Glyavin, N.A. Zavolskiy, A.S. Sedov, G.S. Nusinovich, Phys. Plasmas (2013) https://doi.org/10.1063/1.4791663

    Google Scholar 

  14. V.I. Shcherbinin, A.V. Hlushchenko, A.V. Maksimenko, V.I. Tkachenko, Effect of cavity ohmic losses on efficiency of low-power terahertz gyrotron, IEEE Trans. Electron Devices 64 (9), 3898–3903 (2017) https://doi.org/10.1109/TED.2017.2730252.

  15. S. Spira-Hakkarainen, K.E. Kreischer, R.J. Temkin, IEEE Trans. Plasma Sci. (1990) https://doi.org/10.1109/27.55903

    Google Scholar 

  16. I.V. Bandurkin, Yu.K. Kalynov, A.V. Savilov, Phys. Plasmas (2013) https://doi.org/10.1063/1.4775083

    Google Scholar 

  17. Yu.S. Oparina, A.V. Savilov, J. Infrared Millim. Terahertz Waves (2018) https://doi.org/10.1007/s10762-018-0499-x

    Article  Google Scholar 

  18. I.V. Bandurkin, M.Y. Glyavin, A.E. Fedotov, A.P. Fokin, M. Fukunari, I.V. Osharin, A.V. Savilov, D.Y. Shchegolkov, Y. Tatematsu, IEEE Trans. Electron Devices (2022) https://doi.org/10.1109/TED.2022.3142657

    Article  Google Scholar 

  19. K.A. Avramides, C.T. Iatrou, J.L. Vomvoridis, IEEE Trans. Plasma Sci. (2004) https://doi.org/10.1109/TPS.2004.828781

    Article  Google Scholar 

  20. V.I. Shcherbinin, V.I. Tkachenko, K.A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices (2019) https://doi.org/10.1109/TED.2019.2944647

    Article  Google Scholar 

  21. V.I. Shcherbinin, Y.K. Moskvitina, K.A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices (2020) https://doi.org/10.1109/TED.2020.2996179

    Article  Google Scholar 

  22. V.I. Shcherbinin, K.A. Avramidis, M. Thumm, J. Jelonnek, J. Infrared Millim. Terahertz Waves (2021) https://doi.org/10.1007/s10762-020-00760-9

    Article  Google Scholar 

  23. V.I. Shcherbinin, IEEE Trans. Electron Devices (2021) https://doi.org/10.1109/TED.2021.3090348

    Article  Google Scholar 

  24. S.A. Malygin, V.G. Pavel'ev, Sh.E. Tsimring, in Gyrotrons: Collected Papers, ed. by V.A. Flyagin, G.S. Nusinovich, V.K. Yulpatov, N.A. Gorodetskaya (USSR Academy of Sciences, Institute of Applied Physics, Gorky, 1980), p. 78 (in Russian)

  25. S.A. Malygin, V.G. Pavel'ev, Sh.E. Tsimring, Radiophys. Quantum Electron. (1983) https://doi.org/10.1007/BF01039282

    Article  Google Scholar 

  26. V.G. Pavel'ev, Sh.E. Tsimring, V.E. Zapevalov, Int. J. Electron. (1987) https://doi.org/10.1080/00207218708939142

    Article  Google Scholar 

  27. A.W. Flifiet, R.C. Lee, M.E. Read, Int. J. Electron. (1988) https://doi.org/10.1080/00207218808945229

    Article  Google Scholar 

  28. O. Dumbrajs, E. Borie, Int. J. Electron. (1988) https://doi.org/10.1080/00207218808945230

    Article  Google Scholar 

  29. E. Borie, B. Jödicke, H. Wenzelburger, O. Dumbrajs, Int. J. Electron. (1988) https://doi.org/10.1080/00207218808962788

    Article  Google Scholar 

  30. A.V. Gaponov, V.A. Flyagin, A.L. Goldenberg, G.S. Nusinovich, Sh.E. Tsimring, V.G. Usov, S.N. Vlasov, Int. J. Electron. (1981) https://doi.org/10.1080/00207218108901338

    Article  Google Scholar 

  31. Y. Carmel, K.R. Chu, M. Read, A.K. Ganguly, D. Dialetis, R. Seeley, J.S. Levine, V.L. Granatstein, Phys. Rev. Lett. (1983) https://doi.org/10.1103/PhysRevLett.50.112

    Article  Google Scholar 

  32. K.L. Felch, R. Bier, L. Fox, H. Huey, L. Ives, H. Jory, N. Lopez, J. Manca, J. Shively, S. Spang, Int. J. Electron. (1984) https://doi.org/10.1080/00207218408938968

    Article  Google Scholar 

  33. V.E. Zapevalov, S.A. Malygin, V.G. Pavel'ev, Radiophys. Quantum Electron. (1984) https://doi.org/10.1007/BF01041396

    Article  Google Scholar 

  34. G. Mourier, G. Faillon, P. Garin, Int. J. Electron. (1986) https://doi.org/10.1080/00207218608920917

    Article  Google Scholar 

  35. S.A. Malygin, Sov. J. Commun. Technol. Electron. 31, 106 (1986)

    Google Scholar 

  36. M.V. Kartikeyan, E. Borie, M.K.A. Thumm, Gyrotrons: High Power Microwave and Millimeter Wave Technology (Springer, Berlin, 2004), pp. 41-44

    Book  Google Scholar 

  37. Y. Yamaguchi, M. Fukunari, T. Ogura, T. Ueyama, Y. Maeda, K. Takayama, Y. Tatematsu, T. Saito, Proc. 43rd Int. Conf. Infrared Millim. Terahertz Waves (IRMMW-THz) (2018) https://doi.org/10.1109/IRMMW-THz.2018.8510274

  38. Y. Yamaguchi, T. Ogura, T. Ueyama, Y. Maeda, K. Takayama, J. Sasano, M. Fukunari, Y. Tatematsu, T. Saito, IEEE Electron Device Lett. (2020) https://doi.org/10.1109/LED.2020.3000640

    Article  Google Scholar 

  39. M.M. Melnikova, A.G. Rozhnev, N.M. Ryskin, Y. Tatematsu, M. Fukunari, Y. Yamaguchi, T. Saito, IEEE Trans. Electron Devices (2017) https://doi.org/10.1109/TED.2017.2764874

    Article  Google Scholar 

  40. A.V. Maksimenko, V.I. Shcherbinin, A.V. Hlushchenko, V.I. Tkachenko, K.A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices (2019) https://doi.org/10.1109/TED.2019.2893888

    Article  Google Scholar 

  41. V.I. Shcherbinin, G.I. Zaginaylov, V I. Tkachenko, Problems Atomic Sci. Technol. 4 (98), 89 (2015)

    Google Scholar 

  42. V.L. Bratman, M.A Moiseev, M.I. Petelin, R.É. Érm, Radiophys. Quantum Electron. (1973) https://doi.org/10.1007/BF01030898

    Article  Google Scholar 

  43. V.A. Flyagin, A.V. Gaponov, M.I. Petelin, V.K. Yulpatov, IEEE Trans. Microwave Theory Tech. (1977) https://doi.org/10.1109/TMTT.1977.1129149

    Article  Google Scholar 

  44. C.-H. Du, P.-K. Liu, Nonlinear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit. Phys. Plasmas. 17 (3), 033104 (2010) https://doi.org/10.1063/1.3339935

  45. V.I. Shcherbinin, K.A. Avramidis, I.Gr. Pagonakis, M. Thumm, J. Jelonnek, Large power increase enabled by high-Q diamond-loaded cavities for terahertz gyrotrons, J. Infrared Millim. Terahertz Waves 42 (8), 863–877 (2021) https://doi.org/10.1007/s10762-021-00814-6

  46. T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Z.C. Ioannidis, M. Thumm, J. Jelonnek, J. Infrared Millim. Terahertz Waves (2021) https://doi.org/10.1007/s10762-021-00772-z

    Article  Google Scholar 

  47. E. Borie, O. Dumbrajs, Int. J. Electron. (1986) https://doi.org/10.1080/00207218608920768

    Article  Google Scholar 

  48. G.I. Zaginaylov, V.I. Shcherbinin, K. Schuenemann, M. Yu Glyavin, Novel approach to the theory of longitudinally inhomogeneous lossy waveguides, International KharkovSymposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (2013) https://doi.org/10.1109/MSMW.2013.6622127

  49. A.V. Maksimenko, G.I. Zaginaylov, V.I. Shcherbinin, Physics of Particles and Nuclei Letters (2015) https://doi.org/10.1134/S1547477115020168

    Article  Google Scholar 

  50. A.V. Maksimenko, V.I. Shcherbinin, V.I. Tkachenko, J. Infrared Millim. Terahertz Waves (2019) https://doi.org/10.1007/s10762-019-00589-x

    Article  Google Scholar 

  51. J.M. Neilson, P.E. Latham, M. Caplan, W.G. Lawson, IEEE Trans. Microw. Theory Techn. (1989) https://doi.org/10.1109/22.31074

    Google Scholar 

  52. D. Wagner, G. Gantenbein, W. Kasparek, M. Thumm. Improved gyrotron cavity with high quality factor. Int. J. Infrared Millim. Waves 16 (9), 1481–1489 (1995) https://doi.org/10.1007/BF02274811

  53. V.I. Shcherbinin, G.I. Zaginaylov, V.I. Tkachenko, Problems Atomic Sci. Technol. 6 (106), 255 (2016).

    Google Scholar 

  54. V.I. Shcherbinin, V.I. Tkachenko, Cylindrical cavity with distributed longitudinal corrugations for second harmonic gyrotron,, J. Infrared Millim. Terahertz Waves 38 (7), 838–852 (2017) https://doi.org/10.1007/s10762-017-0386-x

  55. M. Botton, T.M. Antonsen, Jr., B. Levush, K.T. Nguyen, A.N. Vlasov, IEEE Trans. Plasma Sci. (1998) https://doi.org/10.1109/27.700860

    Google Scholar 

  56. H. Yong, L. Hongfu, D. Pingzhong, L. Shenggang, IEEE Trans. Plasma Sci. (1998) https://doi.org/10.1109/27.650910

    Google Scholar 

  57. A.V. Maksimenko, V.I. Shcherbinin, V.I. Tkachenko, Proc. IEEE Ukr. Microw. Week (2020) https://doi.org/10.1109/UkrMW49653.2020.9252719

    Article  Google Scholar 

  58. D. Wagner, M. Thumm, Improvement of the output mode purity of a complex-cavity resonator for a frequency-tunable sub-THz gyrotron, IEEE Trans. Electron Devices 68 (10), 5220–5226  (2021) https://doi.org/10.1109/TED.2021.3105955

  59. B.G. Danly, R.J. Temkin, Phys. Fluids (1986) https://doi.org/10.1063/1.865446

  60. V.I. Shcherbinin, B.A. Kochetov, A.V. Hlushchenko, V.I. Tkachenko, Cutoff frequencies of a dielectric-loaded rectangular waveguide with arbitrary anisotropic surface impedance, IEEE Trans. Microw. Theory Tech. 67 (2), 577–583 (2019) https://doi.org/10.1109/TMTT.2018.2882493

  61. T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Problems Atomic Sci. Technol. 6 (118), 67 (2018)

    Google Scholar 

  62. T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Problems Atomic Sci. Technol. 4 (122), 31 (2019)

    Google Scholar 

  63. T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Selectivity properties of cylindrical waveguides with longitudinal wall corrugations for second-harmonic gyrotrons, J. Infrared Millim. Terahertz Waves 40 (10), 1021–1034 (2019) https://doi.org/10.1007/s10762-019-00623-y

Download references

Acknowledgements

The work of V. I. Shcherbinin was supported by the Alexander von Humboldt Foundation via the Georg Forster Research Fellowship for Experienced Researchers and Philipp Schwartz Initiative for Researchers at Risk. The work of T. I. Tkachova and A. V. Maksimenko was supported by the Grant of the National Academy of Sciences of Ukraine to Research Laboratories/Groups of Young Scientists of the National Academy of Sciences of Ukraine for Conducting Research in Priority Areas of Science and Technology in 2022–2023.

Funding

Partial financial support was received from the Alexander von Humboldt Foundation and the National Academy of Sciences of Ukraine.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Vitalii I. Shcherbinin. The first draft of the manuscript was written by Vitalii I. Shcherbinin, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vitalii I. Shcherbinin.

Ethics declarations

Competing interests

Non-financial interests: Author Manfred Thumm is a member of the Editorial Advisory Board of the JIMTW.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests. Author Manfred Thumm is a member of the Editorial Advisory Board of the JIMTW.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbinin, V.I., Tkachova, T.I., Maksimenko, A.V. et al. A Novel Complex Cavity for Second-Harmonic Subterahertz Gyrotrons: a Tradeoff Between Engineering Tolerance and Mode Selection. J Infrared Milli Terahz Waves 43, 957–971 (2022). https://doi.org/10.1007/s10762-022-00888-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00888-w

Keywords

Navigation