Skip to main content
Log in

Analysis and Calculations on Dispersion Relation and Coupling Resistance of Periodic Plasma-Cavities

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The plasma tensor dielectric permittivity and electromagnetic field accurate expressions in the external axial magnetic field are obtained from the Maxwell’s equations and the double component plasma particle linear movement equations. Further, the flux of energy inside the plasma-cavity drift channel is presented. Based on them, some of the property of cavity passband dispersion and coupling resistance of plasma-filled coupled-cavities slow wave structure in different plasma density and magnetic field conditions is analyzed according to the numerical calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Nusinovich, Y. Carmel, T. M. Antonsen, Jr., D. M. Goebel, and J. Santoru, Recent progress in the development of plasms-filled traveling-wave tubes and backward-wave oscillators, IEEE trans. Plasma Sci. 26(3) (June, 1998).

  2. M. A. Zavjaiov, L. A. Mitin, V. I. Perevodchicov, V. N. Tskhai, and A. L. Shapiro, Powerful wideband amplifier based on hybrid plasma-cavity slow-wave structure. IEEE Trans. Plasma Sci. 22(5) (Oct, 1994).

  3. D. M. Goebel, J. M. Butler, W. Schumacher, J. Santoru, and R. L. Eisenhart, High-power microwave source based on an unmagnetized backward-wave oscillator, IEEE Trans. Plasma Sci. 22(5) (Oct, 1994).

  4. L. Shenggang, J. K. Lee, Z. Dajun, Y. Yang, and S. Liqun, Theory of wave propagation along waveguide filled with plasmas, Science in China (series E), 26(4), 8(1996).

    Google Scholar 

  5. X. Wen-kai, W. Bin, and W. Lei-lei, The electromagnetic wave accurate expressions in plasma-cavity drift channel in arbitrary axial magnetic field, High Power Laser and Particle Beam, 18(8), 1327–1331 (2006).

    Google Scholar 

  6. Z. Zhaohong and W. Hongshi, Theoretical and experimental study of cavities in TWT, ACTA Electronica Sinica 14(1), 1 (1986).

    Google Scholar 

  7. H. G. Kosmahl and G. M. Branch, Jr., Generalized representation of electric fields in interaction gaps of klystrons and traveling-wave tubes. IEEE Trans. Electron Devices ED-20(7) (July, 1973).

  8. A. W. Trivelpiecet and R. W. Gould, Space charge waves in cylindrical plasma columns, J. Appl. Physi. 30, 1784–1793, 11 (1959).

    Article  ADS  Google Scholar 

  9. G. S. Nusinovich, L. A. Mitin, and A. N. Vlasov, Space charge effects in plasma-filled traveling-wave tubes, Phys. Plasma 4(12), 4394–4403 (Dec. 1997).

    Article  ADS  Google Scholar 

  10. W. R. Lou, Y. Carmel, M. Antonsen, Jr., W. W. Destler, and V. L. Granatstein, New modes in a plasma with periodic boundaries: the origin of the dense spectrum, Phys. Rev. Lett. 67(18), 10 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Bin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bin, W., Kai, X. Analysis and Calculations on Dispersion Relation and Coupling Resistance of Periodic Plasma-Cavities. Int J Infrared Milli Waves 28, 149–156 (2007). https://doi.org/10.1007/s10762-006-9190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9190-8

Keywords

Navigation