Skip to main content

Advertisement

Log in

4-Octyl Itaconate Attenuates Neuroinflammation in Experimental Autoimmune Encephalomyelitis Via Regulating Microglia

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Abnormal activation of microglia, the resident macrophages in the central nervous system, plays an important role in the pathogenesis of multiple sclerosis (MS). The immune responsive gene 1(IRG1)/itaconate axis is involved in regulating microglia-mediated neuroinflammation. 4-Octyl itaconate (4-OI), a derivative of itaconate, plays a crucial immunomodulatory role in macrophages. This study investigated the effects and mechanisms of action of 4-OI on experimental autoimmune encephalomyelitis (EAE) and inflammatory BV2 microglia. In an EAE mouse model, clinical evaluation was conducted during the disease course. Hematoxylin and eosin staining was performed to assess inflammatory infiltration and Luxol Fast Blue was used to visualize pathological damage. Quantitative real-time polymerase chain reaction, western blotting and immunofluorescence were used to evaluate inflammatory response and microglial function status in EAE mice. BV2 microglia were used to further investigate the effects and mechanisms of action of 4-OI in vitro. 4-OI significantly alleviated the clinical symptoms of EAE, the inflammatory infiltration, and demyelination; reduced the levels of inflammatory factors; and inhibited the classical activation of microglia in the spinal cord. 4-OI successfully suppressed the classical activation of BV2 microglia and decreased the levels of inflammatory factors by activating the Nrf2/HO-1 signaling pathway. Furthermore, 4-OI downregulated IRG1 expression in both EAE mice and inflammatory BV2 microglia. 4-OI attenuates the microglia-mediated neuroinflammation and has promising therapeutic effects in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ghorbani, Samira, and V Wee Yong. 2021. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain: A Journal of Neurology 144: 1958–1973. https://doi.org/10.1093/brain/awab059.

    Article  PubMed  Google Scholar 

  2. Walton, Clare, Rachel King, Lindsay Rechtman, Wendy Kaye, Emmanuelle Leray, Ruth Ann Marrie, Neil Robertson, et al. 2020. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Multiple Sclerosis (Houndmills, Basingstoke, England) 26: 1816–1821. https://doi.org/10.1177/1352458520970841.

    Article  PubMed  Google Scholar 

  3. Yong, V Wee. 2022. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron 110: 3534–3548. https://doi.org/10.1016/j.neuron.2022.06.023.

    Article  CAS  PubMed  Google Scholar 

  4. Frost, Jeffrey L., and Dorothy P. Schafer. 2016. Microglia: Architects of the Developing Nervous System. Trends in Cell Biology 26: 587–597. https://doi.org/10.1016/j.tcb.2016.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sica, Antonio, and Alberto Mantovani. 2012. Macrophage plasticity and polarization: In vivo veritas. The Journal of Clinical Investigation 122: 787–795. https://doi.org/10.1172/JCI59643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Plastini, Melanie J., Haritha L. Desu, and Roberta Brambilla. 2020. Dynamic Responses of Microglia in Animal Models of Multiple Sclerosis. Frontiers in Cellular Neuroscience 14: 269. https://doi.org/10.3389/fncel.2020.00269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peace, Christian G., and Luke Aj O’Neill. 2022. The role of itaconate in host defense and inflammation. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI148548.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shi, Xuan, Huanping Zhou, Juan Wei, Wei Mo, Quanfu Li, and Xin Lv. 2022. The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases. Redox Biology 58: 102553. https://doi.org/10.1016/j.redox.2022.102553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, Yang, Xing Chen, Hua Zhang, Jie Xiao, Chuanlei Yang, Weiqiang Chen, Zhanjie Wei, Xinzhong Chen, and Jinping Liu. 2020. 4-Octyl Itaconate Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice by Inhibiting Oxidative Stress and Inflammation. Drug Design, Development and Therapy 14: 5547–5558. https://doi.org/10.2147/DDDT.S280922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Ruidong, Wenchang Yang, Yuping Yin, Peng Zhang, Yaxin Wang, and Kaixiong Tao. 2021. Protective Role of 4-Octyl Itaconate in Murine LPS/D-GalN-Induced Acute Liver Failure via Inhibiting Inflammation, Oxidative Stress, and Apoptosis. Oxidative Medicine and Cellular Longevity 2021: 9932099. https://doi.org/10.1155/2021/9932099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He, Sunyue, Yuchen Zhao, Guoxing Wang, Qiaofang Ke, Nan Wu, Lusi Lu, Jiahua Wu, et al. 2023. 4-Octyl itaconate attenuates glycemic deterioration by regulating macrophage polarization in mouse models of type 1 diabetes. Molecular Medicine (Cambridge, Mass.) 29: 31. https://doi.org/10.1186/s10020-023-00626-5.

    Article  CAS  PubMed  Google Scholar 

  12. Li, Weizhen, Yangguang Li, Jiaqi Kang, Haiyang Jiang, Wenbin Gong, Lijuan Chen, Wu. Cunxia, et al. 2023. 4-octyl itaconate as a metabolite derivative inhibits inflammation via alkylation of STING. Cell Reports 42: 112145. https://doi.org/10.1016/j.celrep.2023.112145.

    Article  CAS  PubMed  Google Scholar 

  13. Wu, Ya.-xian, Ya.-ru Zhang, Feng-juan Jiang, Shuai He, Yan-li Zhang, Dan Chen, Ying Tong, Yun-juan Nie, and Qing-feng Pang. 2023. 4-OI ameliorates bleomycin-induced pulmonary fibrosis by activating Nrf2 and suppressing macrophage-mediated epithelial-mesenchymal transition. Inflammation Research 72: 1133–1145. https://doi.org/10.1007/s00011-023-01733-z.

    Article  CAS  PubMed  Google Scholar 

  14. Giralt, Mercedes, Amalia Molinero, and Juan Hidalgo. 2018. Active Induction of Experimental Autoimmune Encephalomyelitis (EAE) with MOG35–55 in the Mouse. Methods in Molecular Biology (Clifton, N.J.) 1791: 227–232. https://doi.org/10.1007/978-1-4939-7862-5_17.

    Article  CAS  PubMed  Google Scholar 

  15. Henderson, John, Sharadha Dayalan Naidu, Albena T. Dinkova-Kostova, Stefan Przyborski, Richard Stratton, and Steven O′ Reilly. 2021. The Cell-Permeable Derivative of the Immunoregulatory Metabolite Itaconate, 4-Octyl Itaconate, Is Anti-Fibrotic in Systemic Sclerosis. Cells. https://doi.org/10.3390/cells10082053.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu, Yu-Tong., Xu. Wen-Ting, Li. Zheng, Sheng Wang, Juan Wei, Mei-Yun. Liu, Huan-Ping. Zhou, Quan-Fu. Li, Xuan Shi, and Xin Lv. 2023. 4-octyl itaconate ameliorates alveolar macrophage pyroptosis against ARDS via rescuing mitochondrial dysfunction and suppressing the cGAS/STING pathway. International Immunopharmacology 118: 110104. https://doi.org/10.1016/j.intimp.2023.110104.

    Article  CAS  PubMed  Google Scholar 

  17. Kuo, Ping-Chang., Wen-Tsan. Weng, Barbara A. Scofield, Hallel C. Paraiso, Dennis A. Brown, Pei-Yu. Wang, and I-Chen Yu, and Jui-Hung Yen. 2020. Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation 17: 138. https://doi.org/10.1186/s12974-020-01768-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aso, Kuniyuki, Michihito Kono, Masatoshi Kanda, Yuki Kudo, Kodai Sakiyama, Ryo Hisada, Kohei Karino, et al. 2023. Itaconate ameliorates autoimmunity by modulating T cell imbalance via metabolic and epigenetic reprogramming. Nature Communications 14: 984. https://doi.org/10.1038/s41467-023-36594-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seim, Gretchen L., Emily C. Britt, Steven V. John, Franklin J. Yeo, Aaron R. Johnson, Richard S. Eisenstein, David J. Pagliarini, and Jing Fan. 2019. Two-stage metabolic remodelling in macrophages in response to lipopolysaccharide and interferon-γ stimulation. Nature Metabolism 1: 731–742. https://doi.org/10.1038/s42255-019-0083-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McGettrick, Anne F., and Luke Aj O’Neill. 2023. Two for the price of one: Itaconate and its derivatives as an anti-infective and anti-inflammatory immunometabolite. Current Opinion in Immunology 80: 102268. https://doi.org/10.1016/j.coi.2022.102268.

    Article  CAS  PubMed  Google Scholar 

  21. Lampropoulou, Vicky, Alexey Sergushichev, Monika Bambouskova, Sharmila Nair, Emma E. Vincent, Ekaterina Loginicheva, Luisa Cervantes-Barragan, et al. 2016. Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metabolism 24: 158–166. https://doi.org/10.1016/j.cmet.2016.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Domínguez-Andrés, Jorge, Boris Novakovic, Yang Li, Brendon P. Scicluna, Mark S. Gresnigt, Rob J W. Arts, Marije Oosting, et al. 2019. The Itaconate Pathway Is a Central Regulatory Node Linking Innate Immune Tolerance and Trained Immunity. Cell Metabolism 29: 211-220.e5. https://doi.org/10.1016/j.cmet.2018.09.003.

    Article  CAS  PubMed  Google Scholar 

  23. Mills, Evanna L., Dylan G. Ryan, Hiran A. Prag, Dina Dikovskaya, Deepthi Menon, Zbigniew Zaslona, Mark P. Jedrychowski, et al. 2018. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556: 113–117. https://doi.org/10.1038/nature25986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Absinta, Martina, Dragan Maric, Marjan Gharagozloo, Thomas Garton, Matthew D. Smith, Jing Jin, Kathryn C. Fitzgerald, et al. 2021. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597: 709–714. https://doi.org/10.1038/s41586-021-03892-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schetters, Sjoerd T T., Diego Gomez-Nicola, Juan J. Garcia-Vallejo, and Yvette Van Kooyk. 2017. Neuroinflammation: Microglia and T Cells Get Ready to Tango. Frontiers in Immunology 8: 1905. https://doi.org/10.3389/fimmu.2017.01905.

    Article  CAS  PubMed  Google Scholar 

  26. Ferguson, B., M. K. Matyszak, M. M. Esiri, and V. H. Perry. 1997. Axonal damage in acute multiple sclerosis lesions. Brain 120: 393–9. https://doi.org/10.1093/brain/120.3.393.

    Article  PubMed  Google Scholar 

  27. van Horssen, Jack, Shailender Singh, Susanne van der Pol, Markus Kipp, Jamie L. Lim, Laura Peferoen, Wouter Gerritsen, et al. 2012. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. Journal of Neuroinflammation 9: 156. https://doi.org/10.1186/1742-2094-9-156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leitner, Dominique F., Bozho Todorich, Xuesheng Zhang, and James R. Connor. 2015. Semaphorin4A Is Cytotoxic to Oligodendrocytes and Is Elevated in Microglia and Multiple Sclerosis. ASN Neuro. https://doi.org/10.1177/1759091415587502.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Suzumura, Akio. 2009. Neurotoxicity by microglia: the mechanisms and potential therapeutic strategy. Fukuoka Igaku Zasshi = Hukuoka Acta Medica 100: 243–7.

    CAS  PubMed  Google Scholar 

  30. Magliozzi, Roberta, Owain William Howell, Pascal Durrenberger, Eleonora Aricò, Rachel James, Carolina Cruciani, Cheryl Reeves, Federico Roncaroli, Richard Nicholas, and Richard Reynolds. 2019. Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. Journal of Neuroinflammation 16: 259. https://doi.org/10.1186/s12974-019-1650-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giles, David A., Jesse M. Washnock-Schmid, Patrick C. Duncker, Somiah Dahlawi, Gerald Ponath, David Pitt, and Benjamin M. Segal. 2018. Myeloid cell plasticity in the evolution of central nervous system autoimmunity. Annals of Neurology 83: 131–141. https://doi.org/10.1002/ana.25128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong, Yifei, Charlotte D’Mello, William Pinsky, Brian M. Lozinski, Deepak K. Kaushik, Samira Ghorbani, Dorsa Moezzi, et al. 2021. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nature Neuroscience 24: 489–503. https://doi.org/10.1038/s41593-021-00801-z.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Ruisi, Yueling Gong, Chenyi Xia, Yemin Cao, Cheng Zhao, and MMingmei Zhou. 2023. Itaconate: A promising precursor for treatment of neuroinflammation associated depression. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 167: 115521. https://doi.org/10.1016/j.biopha.2023.115521.

    Article  CAS  Google Scholar 

  34. Choi, Jong Hee, Oh. Jinhee, Min Jung Lee, Seong-Gyu. Ko, Seung-Yeol. Nah, and Ik-Hyun. Cho. 2021. Gintonin mitigates experimental autoimmune encephalomyelitis by stabilization of Nrf2 signaling via stimulation of lysophosphatidic acid receptors. Brain, behavior, and Immunity 93: 384–398. https://doi.org/10.1016/j.bbi.2020.12.004.

    Article  CAS  PubMed  Google Scholar 

  35. Liao, Shan-Ting., Chao Han, Xu. Ding-Qiao, Fu. Xiao-Wei, Jun-Song. Wang, and Ling-Yi. Kong. 2019. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nature Communications 10: 5091. https://doi.org/10.1038/s41467-019-13078-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang, Chun, Xiaohua Wang, Yingying Xie, Xiaoyan Cai, Yu. Na, Hu. Yudan, and Zhihua Zheng. 2018. 4-Octyl Itaconate Activates Nrf2 Signaling to Inhibit Pro-Inflammatory Cytokine Production in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 51: 979–990. https://doi.org/10.1159/000495400.

    Article  CAS  PubMed  Google Scholar 

  37. Eom, Taekil, In-Hye. Kim, Hyung-Joo. Kim, YounHee Choi, and Taek-Jeong. Nam. 2021. Calystegia soldanella Extract Exerts Anti-Oxidative and Anti-Inflammatory Effects via the Regulation of the NF-κB/Nrf-2 Pathways in Mouse Macrophages. Antioxidants (Basel, Switzerland). https://doi.org/10.3390/antiox10101639.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rojo, Ana I., Nadia G. Innamorato, Ana M. Martín-Moreno, María L. De Ceballos, Masayuki Yamamoto, and Antonio Cuadrado. 2010. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58: 588–598. https://doi.org/10.1002/glia.20947.

    Article  PubMed  Google Scholar 

  39. Kim, Byung-Chul., Woo-Kwang. Jeon, Hye-Young. Hong, Kyung-Bum. Jeon, Jang-Hee. Hahn, Young-Myeong. Kim, Satoshi Numazawa, Takemi Yosida, Eun-Hee. Park, and Chang-Jin. Lim. 2007. The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCdelta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1. Journal of Ethnopharmacology 113: 240–247. https://doi.org/10.1016/j.jep.2007.05.032.

    Article  PubMed  Google Scholar 

  40. Cai, Dawei, Shasha Yin, Jun Yang, Qing Jiang, and Wangsen Cao. 2015. Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis. Arthritis Research & Therapy 17: 269. https://doi.org/10.1186/s13075-015-0774-3.

    Article  CAS  Google Scholar 

  41. Jin, Wei, Handong Wang, Wei Yan, Xu. Lizhi, Xiaoliang Wang, Xiaoning Zhao, Xiaohe Yang, Gang Chen, and Yan Ji. 2008. Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediators of Inflammation 2008: 725174. https://doi.org/10.1155/2008/725174.

    Article  CAS  PubMed  Google Scholar 

  42. Chi, Xinjin, Weifeng Yao, Hua Xia, Yi. Jin, Xi. Li, Jun Cai, and Ziqing Hei. 2015. Elevation of HO-1 Expression Mitigates Intestinal Ischemia-Reperfusion Injury and Restores Tight Junction Function in a Rat Liver Transplantation Model. Oxidative Medicine and Cellular Longevity 2015: 986075. https://doi.org/10.1155/2015/986075.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Saha, Sarmistha, Brigitta Buttari, Emiliano Panieri, Elisabetta Profumo, and Luciano Saso. 2020. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules25225474.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Michelucci, Alessandro, Thekla Cordes, Jenny Ghelfi, Arnaud Pailot, Norbert Reiling, Oliver Goldmann, Tina Binz, et al. 2013. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proceedings of the National Academy of Sciences of the United States of America 110: 7820–7825. https://doi.org/10.1073/pnas.1218599110.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li, Yangguang, Wenbin Gong, Weizhen Li, Peizhao Liu, Juanhan Liu, Haiyang Jiang, Tao Zheng, et al. 2023. The IRG1-Itaconate axis: A regulatory hub for immunity and metabolism in macrophages. International Reviews of Immunology 42: 364–378. https://doi.org/10.1080/08830185.2022.2067153.

    Article  CAS  PubMed  Google Scholar 

  46. Yi, Zhongjie, Meihong Deng, Melanie J. Scott, Guang Fu, Patricia A. Loughran, Zhao Lei, Shilai Li, et al. 2020. Immune-Responsive Gene 1/Itaconate Activates Nuclear Factor Erythroid 2-Related Factor 2 in Hepatocytes to Protect Against Liver Ischemia-Reperfusion Injury. Hepatology (Baltimore, Md.) 72: 1394–1411. https://doi.org/10.1002/hep.31147.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu, Dongdong, Yuanyu Zhao, Yi. Luo, Xiaoqian Qian, Zhen Zhang, Gengru Jiang, and Fengfu Guo. 2021. Irg1-itaconate axis protects against acute kidney injury via activation of Nrf2. American Journal of Translational Research 13: 1155–1169.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, Wenchang, Yaxin Wang, Yongzhou Huang, Tao Wang, Chengguo Li, Peng Zhang, Weizhen Liu, Yuping Yin, Ruidong Li, and Kaixiong Tao. 2024. Immune Response Gene-1 [IRG1]/itaconate protect against multi-organ injury via inhibiting gasdermin D-mediated pyroptosis and inflammatory response. Inflammopharmacology 32: 419–432. https://doi.org/10.1007/s10787-023-01278-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers: 81771363); Tianjin Key Medical Discipline (Specialty) Construction Project (grant numbers: TJYXZDXK-004A); Scientific Research Program of Tianjin Municipal Education Commission (grant numbers: 2022KJ244).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, experimental operation and data analysis were performed by Ning Zhao, Ming Yi, Lin-Jie Zhang. The first draft of the manuscript was written by Ning Zhao and Ming Yi, and all authors commented on previous versions of the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Li Yang.

Ethics declarations

Ethics Approval

All animal experiments were approved by the Ethics Committee of Tianjin Medical University General Hospital (IRB2024-DW-04) and conformed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Yi, M., Zhang, LJ. et al. 4-Octyl Itaconate Attenuates Neuroinflammation in Experimental Autoimmune Encephalomyelitis Via Regulating Microglia. Inflammation (2024). https://doi.org/10.1007/s10753-024-02050-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02050-1

KEY WORDS

Navigation