Skip to main content
Log in

Tetramethylpyrazine Inhibits Platelet Adhesion and Inflammatory Response in Vascular Endothelial Cells by Inhibiting P38 MAPK and NF-κB Signaling Pathways

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Damaged vascular endothelial cells after ischemic stroke release inflammatory cytokines and adhesion molecules, which could trigger platelet adhesion to vascular endothelial cells and platelet activation, and accelerate thrombus formation. Tetramethylpyrazine is the main bioactive component of Chuanxiong, which has demonstrated considerable protective effects in cerebrovascular diseases. However, the effect and mechanisms of tetramethylpyrazine on platelet adhesion to ischemia/reperfusion-injured endothelial cells have not been elucidated. In this study, we established an oxygen-glucose deprivation/reoxygenation (OGD/R)–induced brain microvascular endothelial cells (BMECs) injury model to investigate the protective effects of tetramethylpyrazine on platelet adhesion to endothelial cells and potential mechanisms. Experimental results showed that tetramethylpyrazine inhibited platelets adhesion to BMECs, alleviated expression of inflammatory cytokines and adhesion molecules on BMECs, and protected BMECs injured by OGD/R. Furthermore, tetramethylpyrazine could inhibit P38 MAPK and NF-κB activation in injured BMECs by OGD/R and inhibition of P38 MAPK with SB303580 and NF-κB with Bay-11-7082 attenuated the reduction of platelets adhesion to BMECs by tetramethylpyrazine. In conclusion, tetramethylpyrazine protected BMECs and inhibited platelets adhesion to BMECs after OGD/R injury, which was partially mediated by inhibiting P38 MAPK and NF-κB signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Akt:

serine/threonine kinase 1

Bax:

BCL2-associated X

Bcl-2:

B cell lymphoma-2

BMECs:

brain microvascular endothelial cells

CCK-8:

Cell Counting Kit-8

CXCR4:

C-X-C motif chemokine receptor 4

CXCR7:

C-X-C motif chemokine receptor 7

DMEM:

Dulbecco’s Modified Eagle’s Medium

EBSS:

Earle’s Balanced Salts

ERK:

extracellular regulated MAP kinase

FBS:

fetal bovine serum

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

HIF-1α:

hypoxia inducible factor 1 subunit alpha

HMGB1:

high mobility group box 1

HO-1:

heme oxygenase 1

ICAM-1:

intercellular adhesion molecule-1

IL-1β:

interleukin 1 beta

IL-6:

interleukin 6

IL-8:

interleukin 8

LDH:

lactate dehydrogenase

LPS:

lipopolysaccharide

MAPK:

mitogen-activated protein kinase

MCP-1:

macrophage cationic peptide 1

MLKL:

mixed lineage kinase domain-like protein

NF-κB:

nuclear factor-kappa B

Nrf2:

nuclear factor, erythroid 2 like 2

OGD/R:

oxygen-glucose deprivation/reoxygenation

PBS:

phosphate-buffered saline

PGE1:

prostaglandin E1

RIP1:

receptor-interacting protein kinase 1

RIP3:

receptor-interacting protein kinase 3

PIPES:

piperazine-1,4-bis(2-ethanesulfonic acid)

SDF-1:

stromal cell-derived factor 1

TLR4:

toll-like receptor 4

TNF-α:

tumor necrosis factor alpha

VCAM-1:

vascular cell adhesion molecule 1

References

  1. Bhatt, D.L., P.G. Steg, E.M. Ohman, A.T. Hirsch, Y. Ikeda, J.L. Mas, S. Goto, C.S. Liau, A.J. Richard, J. Röther, P.W. Wilson, and REACH Registry Investigators. 2006. International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 295 (2): 180–189. https://doi.org/10.1001/jama.295.2.180.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, Y., X. Xian, Z. Wang, Y. Bi, Q. Chen, X. Han, D. Tang, and R. Chen. 2018. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 8 (3). https://doi.org/10.3390/biom8030080.

    Article  Google Scholar 

  3. Okada, Y., B.R. Copeland, E. Mori, M.M. Tung, W.S. Thomas, and G.J. del Zoppo. 1994. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 25 (1): 202–211.

    Article  CAS  Google Scholar 

  4. Bombeli, T., B.R. Schwartz, and J.M. Harlan. 1999. Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets. Blood 93 (11): 3831–3838.

    Article  CAS  Google Scholar 

  5. Nieswandt, B., I. Pleines, and M. Bender. 2011. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. Journal of Thrombosis and Haemostasis 9 (Suppl 1): 92–104. https://doi.org/10.1111/j.1538-7836.2011.04361.x.

    Article  CAS  PubMed  Google Scholar 

  6. Steinhubl, S.R., J.J. Badimon, D.L. Bhatt, J.M. Herbert, and T.F. Luscher. 2007. Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vascular Medicine 12 (2): 113–122. https://doi.org/10.1177/1358863X07077462.

    Article  PubMed  Google Scholar 

  7. Yang, W., G. Gong, Y. Zhou, Z. Zhang, and J. Li. 2012. Effect and mechanism of tetramethylpyrazine and antithrombotic. Chinese Journal of Clinical Pharmacology and Therapeutics 17 (3): 4.

    Google Scholar 

  8. Cai, X., Z. Chen, X. Pan, L. Xia, P. Chen, Y. Yang, H. Hu, et al. 2014. Inhibition of angiogenesis, fibrosis and thrombosis by tetramethylpyrazine: mechanisms contributing to the SDF-1/CXCR4 axis. PLoS One 9 (2): e88176. https://doi.org/10.1371/journal.pone.0088176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kao, T.K., C.Y. Chang, Y.C. Ou, W.Y. Chen, Y.H. Kuan, H.C. Pan, S.L. Liao, G.Z. Li, and C.J. Chen. 2013. Tetramethylpyrazine reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. Experimental Neurology 247: 188–201. https://doi.org/10.1016/j.expneurol.2013.04.010.

    Article  CAS  PubMed  Google Scholar 

  10. Chang, C.Y., T.K. Kao, W.Y. Chen, Y.C. Ou, J.R. Li, S.L. Liao, S.L. Raung, and C.J. Chen. 2015. Tetramethylpyrazine inhibits neutrophil activation following permanent cerebral ischemia in rats. Biochemical and Biophysical Research Communications 463 (3): 421–427. https://doi.org/10.1016/j.bbrc.2015.05.088.

    Article  CAS  PubMed  Google Scholar 

  11. Chang, Y., G. Hsiao, S.H. Chen, Y.C. Chen, J.H. Lin, K.H. Lin, D.S. Chou, and J.R. Sheu. 2007. Tetramethylpyrazine suppresses HIF-1alpha, TNF-alpha, and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats. Acta Pharmacologica Sinica 28 (3): 327–333. https://doi.org/10.1111/j.1745-7254.2007.00514.x.

    Article  CAS  PubMed  Google Scholar 

  12. Li, X.Y., J.L. He, H.T. Liu, W.M. Li, and C. Yu. 2009. Tetramethylpyrazine suppresses interleukin-8 expression in LPS-stimulated human umbilical vein endothelial cell by blocking ERK, p38 and nulear factor-kappaB signaling pathways. Journal of Ethnopharmacology 125 (1): 83–89. https://doi.org/10.1016/j.jep.2009.06.008.

    Article  CAS  PubMed  Google Scholar 

  13. Ma, Y., P. Zhao, J. Zhu, C. Yan, L. Li, H. Zhang, M. Zhang, X. Gao, and X. Fan. 2016. Naoxintong protects primary neurons from oxygen-glucosedeprivation/reoxygenation induced injury through PI3K-Akt signaling pathway. Evidence-based Complementary and Alternative Medicine 2016: 5815946. https://doi.org/10.1155/2016/5815946.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Downing, S.R., and G.L. Klement. 2012. Isolation and proteomic analysis of platelets by SELDI-TOF MS. Methods in Molecular Biology 818: 153–170. https://doi.org/10.1007/978-1-61779-418-6_12.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, M., Y. Ma, L. Chai, H. Mao, J. Zhang, and X. Fan. 2018. Storax Protected oxygen-glucosedeprivation/reoxygenation induced primary astrocyte injury by inhibiting NF-kappaB activation in vitro. Frontiers in Pharmacology 9: 1527. https://doi.org/10.3389/fphar.2018.01527.

    Article  CAS  PubMed  Google Scholar 

  16. Fan, X., L. Chai, H. Zhang, Y. Wang, B. Zhang, and X. Gao. 2015. Borneol depresses P-glycoprotein function by a NF-kappaB signaling mediated mechanism in a blood brain barrier in vitro model. International Journal of Molecular Sciences 16 (11): 27576–27588. https://doi.org/10.3390/ijms161126051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishikawa, M., J.H. Zhang, A. Nanda, and D.N. Granger. 2004. Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation. Frontiers in Bioscience 9: 1339–1347.

    Article  CAS  Google Scholar 

  18. Freynhofer, M.K., V. Bruno, J. Wojta, and K. Huber. 2012. The role of platelets in athero-thrombotic events. Current Pharmaceutical Design 18 (33): 5197–5214.

    Article  CAS  Google Scholar 

  19. Fuentes, Q.E., Q.F. Fuentes, V. Andres, O.M. Pello, J. Font de Mora, and G.I. Palomo. 2013. Role of platelets as mediators that link inflammation and thrombosis in atherosclerosis. Platelets 24 (4): 255–262. https://doi.org/10.3109/09537104.2012.690113.

    Article  CAS  Google Scholar 

  20. Cho, Y.S., S. Challa, D. Moquin, R. Genga, T.D. Ray, M. Guildford, and F.K. Chan. 2009. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137 (6): 1112–1123. https://doi.org/10.1016/j.cell.2009.05.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, S., L. Wang, L. Miao, T. Wang, F. Du, L. Zhao, and X. Wang. 2009. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137 (6): 1100–1111. https://doi.org/10.1016/j.cell.2009.05.021.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, H., L. Sun, L. Su, J. Rizo, L. Liu, L.F. Wang, F.S. Wang, and X. Wang. 2014. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Molecular Cell 54 (1): 133–146. https://doi.org/10.1016/j.molcel.2014.03.003.

    Article  CAS  PubMed  Google Scholar 

  23. Lakhan, S.E., A. Kirchgessner, and M. Hofer. 2009. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. Journal of Translational Medicine 7: 97. https://doi.org/10.1186/1479-5876-7-97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harari, O.A., and J.K. Liao. 2010. NF-kappaB and innate immunity in ischemic stroke. Annals of the New York Academy of Sciences 1207: 32–40. https://doi.org/10.1111/j.1749-6632.2010.05735.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gawaz, M., H. Langer, and A.E. May. 2005. Platelets in inflammation and atherogenesis. The Journal of Clinical Investigation 115 (12): 3378–3384. https://doi.org/10.1172/JCI27196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frenette, P.S., R.C. Johnson, R.O. Hynes, and D.D. Wagner. 1995. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proceedings of the National Academy of Sciences of the United States of America 92 (16): 7450–7454. https://doi.org/10.1073/pnas.92.16.7450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng, X., H. Wang, X. Zhang, S. Zhao, Z. Zhou, X. Mu, C. Zhao, and W. Teng. 2017. The role of SDF-1/CXCR4/CXCR7 in neuronal regeneration after cerebral ischemia. Frontiers in Neuroscience 11: 590. https://doi.org/10.3389/fnins.2017.00590.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Balabanian, K., B. Lagane, S. Infantino, K.Y. Chow, J. Harriague, B. Moepps, F. Arenzana-Seisdedos, M. Thelen, and F. Bachelerie. 2005. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. The Journal of Biological Chemistry 280 (42): 35760–35766. https://doi.org/10.1074/jbc.M508234200.

    Article  CAS  PubMed  Google Scholar 

  29. Hummel, S., H. Van Aken, and A. Zarbock. 2014. Inhibitors of CXC chemokine receptor type 4: putative therapeutic approaches in inflammatory diseases. Current Opinion in Hematology 21 (1): 29–36. https://doi.org/10.1097/MOH.0000000000000002.

    Article  CAS  PubMed  Google Scholar 

  30. Wei, Y., J. Liu, H. Zhang, X. Du, Q. Luo, J. Sun, F. Liu, et al. 2016. Ligustrazine attenuates inflammation and the associated chemokines and receptors in ovalbumine-induced mouse asthma model. Environmental Toxicology and Pharmacology 46: 55–61. https://doi.org/10.1016/j.etap.2016.07.005.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, W., W. Chen, J. Zhu, N. Chen, and Y. Lu. 2016. Potent anti-inflammatory activity of tetramethylpyrazine is mediated through suppression of NF-k. Iranian Journal of Pharmaceutical Research 15 (1): 197–204.

    CAS  PubMed  Google Scholar 

  32. Ridder, D.A., and M. Schwaninger. 2009. NF-kappaB signaling in cerebral ischemia. Neuroscience 158 (3): 995–1006. https://doi.org/10.1016/j.neuroscience.2008.07.007.

    Article  CAS  PubMed  Google Scholar 

  33. DiDonato, J.A., M. Hayakawa, D.M. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388 (6642): 548–554. https://doi.org/10.1038/41493.

    Article  CAS  PubMed  Google Scholar 

  34. Adam, F., A. Kauskot, J.P. Rosa, and M. Bryckaert. 2008. Mitogen-activated protein kinases in hemostasis and thrombosis. Journal of Thrombosis and Haemostasis 6 (12): 2007–2016. https://doi.org/10.1111/j.1538-7836.2008.03169.x.

    Article  CAS  PubMed  Google Scholar 

  35. Barone, F.C., E.A. Irving, A.M. Ray, J.C. Lee, S. Kassis, S. Kumar, A.M. Badger, J.J. Legos, J.A. Erhardt, E.H. Ohlstein, A.J. Hunter, D.C. Harrison, K. Philpott, B.R. Smith, J.L. Adams, and A.A. Parsons. 2001. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Medicinal Research Reviews 21 (2): 129–145.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (81622051) and Natural Science Foundation of Tianjin City (15JCYBJC54800).

Author information

Authors and Affiliations

Author notes

  1. Han Zhang and Weiwei Tang contributed equally to this work.

    Authors

    Contributions

    HZ and XF contributed to the design of the study. HZ, WT, and SW were responsible for the data collection. HZ, WT, and XF analyzed the data. HZ and XF interpreted the data. XF drafted the manuscript. JZ revised the manuscript content. All the authors read and approved the final manuscript.

    Corresponding author

    Correspondence to Xiang Fan.

    Ethics declarations

    Conflict of Interest

    The authors declare that they have no conflict of interest.

    Additional information

    Publisher’s Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Zhang, H., Tang, W., Wang, S. et al. Tetramethylpyrazine Inhibits Platelet Adhesion and Inflammatory Response in Vascular Endothelial Cells by Inhibiting P38 MAPK and NF-κB Signaling Pathways. Inflammation 43, 286–297 (2020). https://doi.org/10.1007/s10753-019-01119-6

    Download citation

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s10753-019-01119-6

    KEY WORDS

    Navigation