Skip to main content

Advertisement

Log in

Angiopoietin-Like Protein 7 Promotes an Inflammatory Phenotype in RAW264.7 Macrophages Through the P38 MAPK Signaling Pathway

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Angiopoietin-like protein 7 (Angptl7) has been extensively studied for decades, but its potential immune functions have not been characterized. Hence, we investigated the relationship between Angptl7 and inflammation by using RAW264.7 monocyte/macrophage cells. The expression of genes encoding inflammation-associated factors cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, IL-10, and transforming growth factor beta 1 (TGF-β1)) decreased after RAW264.7 cells were treated with anti-Angptl7 polyclonal antibody but increased after the cells were transfected with an Angptl7-expressing plasmid. Angptl7 overexpression enhanced phagocytosis and inhibited the proliferation of RAW264.7 cells. In addition, Angptl7 antagonized the anti-inflammatory effects of TGF-β1 and dexamethasone. Pathway analysis showed that Angptl7 promoted the phosphorylation of both p65 and p38, but only the P38 mitogen-activated protein kinase (MAPK) signaling pathway mediated Angptl7-associated inflammatory functions. Additionally, after 1 week of daily intraperitoneal injections of recombinant TNF-α in a mouse model of peripheral inflammation, Angptl7 expression increased in the mouse eyes. Thus, Angptl7 is a factor that promotes pro-inflammatory responses in macrophages through the P38 MAPK signaling pathway and represents a potential therapeutic target for treatment of inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kadomatsu, T., M. Tabata, and Y. Oike. 2011. Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. FEBS Journal 278(4): 559–64.

    Article  CAS  PubMed  Google Scholar 

  2. Hato, T., M. Tabata, and Y. Oike. 2008. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends in Cardiovascular Medicine 18(1): 6–14.

    Article  CAS  PubMed  Google Scholar 

  3. Santulli, G. 2014. Angiopoietin-like proteins: a comprehensive look. Frontiers in Endocrinol (Lausanne) 5: 4.

    Google Scholar 

  4. Peek, R., B.E. van Gelderen, M. Bruinenberg, and A. Kijlstra. 1998. Molecular cloning of a new angiopoietin-like factor from the human cornea. Investigative Ophthalmology & Visual Science 39(10): 1782–8.

    CAS  Google Scholar 

  5. Peek, R., R.A. Kammerer, S. Frank, I. Otte-Holler, and J.R. Westphal. 2002. The angiopoietin-like factor cornea-derived transcript 6 is a putative morphogen for human cornea. Journal of Biological Chemistry 277(1): 686–93.

    Article  CAS  PubMed  Google Scholar 

  6. Comes, N., L.K. Buie, and T. Borras. 2011. Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma. Genes to Cells 16(2): 243–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuchtey, J., M.E. Kallberg, K.N. Gelatt, T. Rinkoski, A.M. Komaromy, and R.W. Kuchtey. 2008. Angiopoietin-like 7 secretion is induced by glaucoma stimuli and its concentration is elevated in glaucomatous aqueous humor. Investigative Ophthalmology & Visual Science 49(8): 3438–48.

    Article  Google Scholar 

  8. Parri, M., L. Pietrovito, A. Grandi, S. Campagnoli, E. De Camilli, F. Bianchini, et al. 2014. Angiopoietin-like 7, a novel pro-angiogenetic factor over-expressed in cancer. Angiogenesis.

  9. Lim, S.Y., A. Gordon-Weeks, D. Allen, V. Kersemans, J. Beech, S. Smart, et al. 2015. CD11b myeloid cells support hepatic metastasis through downregulation of angiopoietin-like 7 in cancer cells. Hepatology.

  10. Toyono, T., T. Usui, S. Yokoo, Y. Taketani, S. Nakagawa, M. Kuroda, et al. 2015. Angiopoietin-like 7 is an anti-angiogenic protein required to prevent vascularization of the cornea. PLoS One 10(1): e0116838.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xiao, Y., Z. Jiang, Y. Li, W. Ye, B. Jia, M. Zhang, et al. 2015. ANGPTL7 regulates the expansion and repopulation of human hematopoietic stem and progenitor cells. Haematologica.

  12. Hansson, G.K. 2005. Inflammation, atherosclerosis, and coronary artery disease. New England Journal of Medicine 352(16): 1685–95.

    Article  CAS  PubMed  Google Scholar 

  13. Dandona, P., A. Aljada, and A. Bandyopadhyay. 2004. Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immunology 25(1): 4–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bergman, M., M. Djaldetti, H. Salman, and H. Bessler. 2011. Inflammation and colorectal cancer: does aspirin affect the interaction between cancer and immune cells? Inflammation 34(1): 22–8.

    Article  CAS  PubMed  Google Scholar 

  15. Murray, P.J., and T.A. Wynn. 2011. Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology 11(11): 723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Toso, C., J.A. Emamaullee, S. Merani, and A.M. Shapiro. 2008. The role of macrophage migration inhibitory factor on glucose metabolism and diabetes. Diabetologia 51(11): 1937–46.

    Article  CAS  PubMed  Google Scholar 

  17. Tang, S., X.Y. Shen, H.Q. Huang, S.W. Xu, Y. Yu, C.H. Zhou, et al. 2011. Cryptotanshinone suppressed inflammatory cytokines secretion in RAW264.7 macrophages through inhibition of the NF-kappaB and MAPK signaling pathways. Inflammation 34(2): 111–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ahn, C.B., W.K. Jung, S.J. Park, Y.T. Kim, W.S. Kim, and J.Y. Je. 2015. Gallic acid-g-chitosan modulates inflammatory responses in LPS-stimulated RAW264.7 cells via NF-kappaB, AP-1, and MAPK pathways. Inflammation.

  19. Fengyang, L., F. Yunhe, L. Bo, L. Zhicheng, L. Depeng, L. Dejie, et al. 2012. Stevioside suppressed inflammatory cytokine secretion by downregulation of NF-kappaB and MAPK signaling pathways in LPS-stimulated RAW264.7 cells. Inflammation 35(5): 1669–75.

    Article  PubMed  Google Scholar 

  20. Hinds Jr., T.D., S. Ramakrishnan, H.A. Cash, L.A. Stechschulte, G. Heinrich, S.M. Najjar, et al. 2010. Discovery of glucocorticoid receptor-beta in mice with a role in metabolism. Molecular Endocrinology 24(9): 1715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kihara, Y., H. Mizuno, and J. Chun. 2015. Lysophospholipid receptors in drug discovery. Experimental Cell Research 333(2): 171–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, F., W. Yue, and Y. Wang. 2014. The nuclear factor kappa B (NF-kappaB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells. Experimental Cell Research 327(2): 256–63.

    Article  CAS  PubMed  Google Scholar 

  23. Kim, N.H., Y. Son, S.O. Jeong, J. Moon Hur, H. Soo Bang, K.N. Lee, et al. 2010. Tetrahydroabietic acid, a reduced abietic acid, inhibits the production of inflammatory mediators in RAW264.7 macrophages activated with lipopolysaccharide. Journal of Clinical Biochemistry and Nutrition 46(2): 119–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pariante, C.M., B.D. Pearce, T.L. Pisell, C.I. Sanchez, C. Po, C. Su, et al. 1999. The proinflammatory cytokine, interleukin-1alpha, reduces glucocorticoid receptor translocation and function. Endocrinology 140(9): 4359–66.

    CAS  PubMed  Google Scholar 

  25. Lim, S., E. Bae, H.S. Kim, T.A. Kim, K. Byun, B. Kim, et al. 2012. TRAF6 mediates IL-1beta/LPS-induced suppression of TGF-beta signaling through its interaction with the type III TGF-beta receptor. PLoS One 7(3): e32705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clark, A.R. 2007. Anti-inflammatory functions of glucocorticoid-induced genes. Molecular and Cellular Endocrinology 275(1–2): 79–97.

    Article  CAS  PubMed  Google Scholar 

  27. Lewis-Tuffin, L.J., and J.A. Cidlowski. 2006. The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance. Annals of the New York Academy of Sciences 1069: 1–9.

    Article  CAS  PubMed  Google Scholar 

  28. Sethu, S., P.N. Pushparaj, and A.J. Melendez. 2010. Phospholipase D1 mediates TNFalpha-induced inflammation in a murine model of TNFalpha-induced peritonitis. PLoS One 5(5): e10506.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Daftarian, P.M., A. Kumar, M. Kryworuchko, and F. Diaz-Mitoma. 1996. IL-10 production is enhanced in human T cells by IL-12 and IL-6 and in monocytes by tumor necrosis factor-alpha. Journal of Immunology 157(1): 12–20.

    CAS  Google Scholar 

  30. Sullivan, D.E., M. Ferris, H. Nguyen, E. Abboud, and A.R. Brody. 2009. TNF-alpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. Journal of Cellular and Molecular Medicine 13(8B): 1866–76.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aderem, A., and D.M. Underhill. 1999. Mechanisms of phagocytosis in macrophages. Annual Review of Immunology 17: 593–623.

    Article  CAS  PubMed  Google Scholar 

  32. Platt, N., H. Suzuki, Y. Kurihara, T. Kodama, and S. Gordon. 1996. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proceedings of the National Academy of Sciences of the United States of America 93(22): 12456–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, F., Y. Pan, Z. Huang, Y. Jia, X. Zhao, Y. Chen, et al. 2013. Visfatin induces cholesterol accumulation in macrophages through up-regulation of scavenger receptor-A and CD36. Cell Stress & Chaperones 18(5): 643–52.

    Article  CAS  Google Scholar 

  34. Smoak, K.A., and J.A. Cidlowski. 2004. Mechanisms of glucocorticoid receptor signaling during inflammation. Mechanisms of Ageing and Development 125(10–11): 697–706.

    Article  CAS  PubMed  Google Scholar 

  35. Flavell, R.A., S. Sanjabi, S.H. Wrzesinski, and P. Licona-Limon. 2010. The polarization of immune cells in the tumour environment by TGFbeta. Nature Reviews Immunology 10(8): 554–67.

    Article  CAS  PubMed  Google Scholar 

  36. Kastan, M.B., and J. Bartek. 2004. Cell-cycle checkpoints and cancer. Nature 432(7015): 316–23.

    Article  CAS  PubMed  Google Scholar 

  37. Gilmore, T.D. 2006. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51): 6680–4.

    Article  CAS  PubMed  Google Scholar 

  38. Cuadrado, A., and A.R. Nebreda. 2010. Mechanisms and functions of p38 MAPK signalling. Biochemical Journal 429(3): 403–17.

    Article  CAS  PubMed  Google Scholar 

  39. Mercau, M.E., F. Astort, E.F. Giordanino, C. Martinez Calejman, R. Sanchez, L. Caldareri, et al. 2014. Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells. Molecular and Cellular Endocrinology 384(1–2): 43–51.

    Article  CAS  PubMed  Google Scholar 

  40. An, H., H. Xu, Y. Yu, M. Zhang, R. Qi, X. Yan, et al. 2002. Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways. Immunology Letters 81(3): 165–9.

    Article  CAS  PubMed  Google Scholar 

  41. Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology 23(11): 549–55.

    Article  CAS  PubMed  Google Scholar 

  42. Lewis, C.E., and J.W. Pollard. 2006. Distinct role of macrophages in different tumor microenvironments. Cancer Research 66(2): 605–12.

    Article  CAS  PubMed  Google Scholar 

  43. Lewis, C., and C. Murdoch. 2005. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. American Journal of Pathology 167(3): 627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iannitti, T., A. Graham, and S. Dolan. 2012. Increased central and peripheral inflammation and inflammatory hyperalgesia in Zucker rat model of leptin receptor deficiency and genetic obesity. Experimental Physiology 97(11): 1236–45.

    Article  CAS  PubMed  Google Scholar 

  45. Kosacka, J., M. Kern, N. Kloting, S. Paeschke, A. Rudich, Y. Haim, et al. 2015. Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Molecular and Cellular Endocrinology 409: 21–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Key Basic Research Program of China (2012CB124702), the 948 Program (2012-S13 and 2013-S15), the Specialized Research Fund for the Doctoral Program of Higher Education (20110146130002), the Program of National Natural Science Foundation of China (31172093), the National Science Foundation for Fostering Talents in Basic Research (J1103510), and the Fundamental Research Funds for the Central Universities (2013PY005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaiqing Yang.

Additional information

Highlights

- Angptl7 overexpression induces a pro-inflammatory phenotype in RAW264.7 cells.

- Angptl7 overexpression inhibits TGF-β and glucocorticoid pathways in RAW264.7 cells.

- The P38 MAPK signaling pathway mediates Angptl7-associated inflammatory functions in RAW264.7 cells.

- Intraperitoneal injection of TNF-α induces Angptl7 expression in mouse eyes.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, T., Wang, K., Cui, J. et al. Angiopoietin-Like Protein 7 Promotes an Inflammatory Phenotype in RAW264.7 Macrophages Through the P38 MAPK Signaling Pathway. Inflammation 39, 974–985 (2016). https://doi.org/10.1007/s10753-016-0324-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0324-4

KEY WORDS

Navigation