Skip to main content
Log in

On/off spin-crossover phenomenon and control of the transition temperature in assembled Iron(II) complexes

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The present study reveals the on/off of spin-crossover (SCO) phenomenon in assembled Fe(II) complexes bridged by bis(pyridyl) type ligand. Whether SCO phenomenon occurs or not in assembled Fe(II) complexes bridged by bis(pyridyl) type ligand is determined by local structure around iron atom. SCO phenomenon occurs when the coordinating pyridines facing to each other across the iron atom are propeller type, while the phenomenon does not occur when they are parallel type or distorted propeller type. DFT calculation explained that, in the shortening of Fe-pyridine bonds when changing from high-spin state to low-spin state, the pyridines of propeller type can approach the iron atom with smaller steric hindrance than those of parallel and distorted propeller type complexes. The local structure is controlled by introducing methyl substituent and introducing π-system, changing SCO phenomenon. And the transition temperature of SCO is also controlled in assembled complexes bridged by 1,2-bis(4-pyridyl)ethane by mixing anionic ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gütlich, P., Goodwin, H.A. (eds.): Spin crossover in transition metal compounds I. Springer-Verlag, Berlin (2004)

    Google Scholar 

  2. Gütlich, P.: In: Gütlich, P., Bill, E., Trautwein A.X. (eds.) Mössbauer spectroscopy and transition metal chemistry, pp 391–476. Springer-Verlag, Berlin (2011)

  3. Decurtins, S., Gütlich, P, Köhler, C.P., Spiering, H., Hauser, A.: Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 105, 1–4 (1984)

    Article  ADS  Google Scholar 

  4. Decurtins, S., Gütlich, P, Haselbach, K.M., Hauser, A., Spiering, H.: Light-induced excited-spin-state trapping in iron(II) spin-crossover systems. Optical spectroscopic and magnetic susceptibility study. Inorg Chem. 24, 2174–2178 (1985)

    Article  Google Scholar 

  5. Galyametdinov, Y., Ksenofontov, V., Prosvirin, A., Ovchinnikov, I., Ivanova, G., Gütlich, P., Haase, W.: First example of coexistence of thermmmal spin transition and liquid-crystal properties. Angew. Chem. Int. Ed. 40, 4269–4271 (2001)

    Article  Google Scholar 

  6. Hayami, S., Moriyama, R., Shuto, A., Masuhara, N., Someya, T., Ogawa, Y., Inoue, K., Kato, K., Osaka, K., Takata, M., Kawajiri, R., Mitani, T., Maeda, Y.: Photoinduced spin transition for iron(II) compounds with liquid-crystal properties. Inorg. Chem. 46, 1789–1794 (2007)

    Article  Google Scholar 

  7. Grondin, P., Siretanu, D., Roubeau, O., Achard, M.-F., Clérac, R.: Liquid-crystalline zinc(II) and iron(II) alkyltriazoles one-dimensional coordination polymers. Inorg. Chem. 51, 5417–5426 (2012)

    Article  Google Scholar 

  8. Coronado, E., GalánMascarós, R., MonrabalCapilla, M., GarcíaMartínez, J., PardoIbáñez, P.: Bistable spincrossover nanoparticles showing magnetic thermal hysteresis near room temperature. Adv. Mater. 19, 1359–1361 (2007)

    Article  Google Scholar 

  9. Martínez, V., Boldog, I., Gaspar, A.B., Ksenofontov, V., Bhattacharjee, A., Gütlich, P., Real, J.A.: Spin crossover phenomenon in nanocrystals and nanoparticles of [Fe(3-Fpy)2M(CN)4] (MII = Ni, Pd, Pt) two-dimensional coordination polymers. Chem. Mater. 22, 4271–4281 (2010)

    Article  Google Scholar 

  10. Roubeau, O., Colin, A., Schmitt, V., Clérac, R.: Thermoreversible gels as magneto-optical switches. Angew. Chem. Int. Ed. 43, 3283–3286 (2004)

    Article  Google Scholar 

  11. Fujigaya, T., Jiang, D.-L., Aida, T.: Spin-crossover physical gels: A quick thermoreversible response assisted by dynamic self-organization. Chem. Asian J. 2, 106–113 (2007)

    Article  Google Scholar 

  12. Roubeau, O., Agricole, B., Clérac, R, Ravaine, S.: Triazole-based magnetic lamgmuir-blodgett films: Paramagnetic to spin-crossover behavior. J. Phys. Chem. B 108, 15110–15116 (2004)

    Article  Google Scholar 

  13. Roubeau, O., Nativida, E., Agricole, B., Ravaine, S.: Formation, structure, and morphology of triazole-based langmuir-blodgett films. Langmuir 23, 3110–3117 (2007)

    Article  Google Scholar 

  14. Fujigaya, T., Jiang, D.-L., Aida, T.: Spin-crossover dendrimers:? generation number-dependent cooperativity for thermal spin transition. J. Am. Chem. Soc. 127, 5484–5489 (2005)

    Article  Google Scholar 

  15. Sonar, P., Grunert, C.M., Wei, Y.-L., Kusz, J., Gütlich, P., Schlüter, A.D: Iron(II) spin transition complexes with dendritic ligands, Part I. Eur. J. Inorg. Chem., 1613–1622 (2008)

  16. Muller, R.N., Elst, L.V., Laurent, S.: Spin transition molecular materials: Intelligent contrast agents for magnetic resonance imaging. J. Am. Chen. Soc. 125, 8405–8407 (2003)

    Article  Google Scholar 

  17. Kahn, O., Kröber, J., Jay, C.: Spin transition molecular materials for displays and data recording. Adv. Mater. 4, 718–728 (1992)

    Article  Google Scholar 

  18. Hayami, S., Shigeyoshi, Y., Akita, M., Inoue, K., Maeda, Y.: Reverse spin transition triggered by a structural phase transition. Angew. Chem. Int. Ed. 44, 4899–4903 (2005)

    Article  Google Scholar 

  19. Ohtani, R., Egawa, S., Nakaya, M., Ohmagari, H., Nakamura, M., Lindoy, L.F., Hayami, S.: Metal dilution e?ects on the reverse spin transition in mixed crystals of type [Co1−xZnx(C16-terpy)2](BF4)2 (x = 0.1−0.7). Inorg. Chem. 55, 3332–3337 (2016)

    Article  Google Scholar 

  20. Kitazawa, T., Gomi, Y., Takahashi, M., Takeda, M., Enomoto, M., Miyazaki, A., Enoki, T.: Spin-crossover behaviour of the coordination polymer FeII(C5 H 5N)2NiII(CN)4. J. Mater. Chem. 6, 119–121 (1996)

    Article  Google Scholar 

  21. Niel, V., Martinez-Agudo, J.M., Muñoz, M.C., Gaspar, A.B., Real, J.A.: Cooperative spin crossover behavior in cyanide-bridged Fe(II)−M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). Inorg. Chem. 40, 3838–3839 (2001)

    Article  Google Scholar 

  22. Muñoz, M C, Gaspar, A.B., Galet, A., Real, J.A.: Spin-crossover behavior in cyanide-bridged iron(II)−silver(I) bimetallic 2D Hofmann-like metal−organic frameworks. Inorg. Chem. 46, 8182–8192 (2007)

    Article  Google Scholar 

  23. Agustí, G., Muñoz, M.C., Gaspar, A.B., Real, J.A.: Spin-crossover behavior in cyanide-bridged iron(II)−gold(I) bimetallic 2D Hofmann-like metal−organic frameworks. Inorg. Chem 47, 2552–2561 (2008)

    Article  Google Scholar 

  24. Rodriguez-Velamazan, J.A., Carbonera, C., Castro, M., Palacios, E., Kitazawa, T., Letard, J.-F., Burriel, R.: Two-step thermal spin transition and LIESST relaxation of the polymeric spin-crossover compounds Fe(X-py)2[Ag(CN)2]2 (X = H, 3-Methyl, 4-Methyl, 3,4-Dimethyl, 3-Cl). Chem. Eur. J. 16, 8785–8796 (2010)

    Article  Google Scholar 

  25. Dîrtu, M.M., Naik, A.D., Rotaru, A., Spinu, L., Poelman, D., Garcia, Y.: FeII spin transition materials including an amino–ester 1,2,4-triazole derivative, operating at, below, and above room temperature. Inorg. Chem. 55, 4278–4295 (2016)

    Article  Google Scholar 

  26. Roubeau, O.: Triazole-based one-dimensional spin-crossover coordination polymers. Chem. Eur. J. 18, 15230–15244 (2012)

    Article  Google Scholar 

  27. Quesada, M., Koojiman, H., Gomez, P., Costa, J.S., Koningsbruggen, P.J., Weinberger, P., Reissner, M., Spek, A.L., Haasnoot, J.G., Reedjik, J.: [Fe(μ-btzmp)2(btzmp)2](ClO4)2: a doubly-bridged 1D spin-transition bistetrazole-based polymer showing thermal hysteresis behavior. Dalton Trans, 5434–5440 (2007)

  28. Moliner, N., Muñoz, M C, Létard, S, Salmon, L., Tuchgues, J.P., Boussksou, A., Real, J.A.: Mass effect on the equienergetic high-spin/low-spin states of spin-crossover in 4,4‘-Bipyridine-bridged Iron(II) polymeric compounds:? Synthesis, structure, and magnetic, Mössbauer, and theoretical studies. Inorg. Chem. 41, 6997–7005 (2002)

    Article  Google Scholar 

  29. Kojima, N., Aoki, W., Itoi, M., Ono, Y., Seto, M., Kobayashi, Y., Maeda, Y.: Charge transfer phase transition and ferromagnetism in mixed-valence iron complex, [(n-C3 H 7)4N][FeIIFeIII(dto)3] (dto= C 2 O 2 S 2). Solid State Commun. 120, 165–170 (2001)

    Article  ADS  Google Scholar 

  30. Nakamoto, T., Miyazaki, Y., Itoi, M., Ono, Y., Kojima, N., Sorai, M.: Heat capacity of the mixed-valence complex {[(n-C3 H 7)4N][FeIIFeIII(dto)3]}, phase transition because of electron transfer, and a change in spin-state of the whole system. Angew. Chem. Int. Ed. 40, 4716–4719 (2001)

    Article  Google Scholar 

  31. Real, J.A., Andrés, E., Muñoz, M.C., Julve, M., Granier, T., Bousseksou, A., Varret, F.: Spin crossover in a catenane supramolecular system. Science 268, 265–267 (1995)

    Article  ADS  Google Scholar 

  32. Moliner, N., Muñoz, C., Létard, S., Solans, X., Menéndez, N., Goujon, A., Varret, F., Real, J.A.: Spin crossover bistability in three mutually perpendicular interpenetrated (4,4) nets. Inorg. Chem. 39, 5390–5393 (2000)

    Article  Google Scholar 

  33. Neville, S.M., Halder, G.J., Chapman, K.W., Duriska, M.B., Moubaraki, M., Murray, K.S., Kepert, C.J.: Guest tunable structure and spin crossover properties in a nanoporous coordination framework material. J. Am. Soc. Chem. 131, 12106–12108 (2009)

    Article  Google Scholar 

  34. Halder, G.J., Kepert, C.J., Moubaraki, B., Murray, K.S., Cashion, J.D.: Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002)

    Article  ADS  Google Scholar 

  35. Morita, T., Asada, Y., Okuda, T., Nakashima, S.: Isomerism of assembled iron complex bridged by 1,2-di(4-pyrisyl)ethane and its solid-to-solid transformation accompanied by a change of electronic state. Bull Chem. Soc. Jpn. 79, 738–744 (2006)

    Article  Google Scholar 

  36. Morita, T., Nakashima, S., Yamada, K., Inoue, K.: Occurrence of the spin-crossover phenomenon of assembled complexes, Fe(NCX)2(bpa)2 (X= S, BH3; bpa= 1,2-bis(4-pyridyl)ethane) by enclathrating organic guest molecule. Chem. Lett. 35, 1042–1043 (2006)

    Article  Google Scholar 

  37. Halder, G.J., Chapman, K.W., Neville, S.M., Moubaraki, B., Murray, K.S., Létard, J., Kepert, C.J.: Elucidating the mechanism of a two-step spin transition in a nanoporous metal−organic framework. J. Am. Chem. Soc. 130, 17552–17562 (2008)

    Article  Google Scholar 

  38. Atsuchi, M., Higashikawa, H., Yoshida, Y., Nakashima, S., Inoue, K.: Novel 2D interpenetrated structure and occurrence of the spin-crossover phenomena of assembled complexes, Fe(NCX)2(bpp)2 (X = S, Se, BH3; bpp = 1,3-Bis(4-pyridyl)propane. Chem. Lett. 36, 1064–1065 (2006)

    Article  Google Scholar 

  39. Atsuchi, M., Inoue, K., Nakashima, S.: Nakashima, S. Reversible structural change of host framework triggered by desorption and adsorption of guest benzene molecules in Fe(NCS)2(bpp)2 ⋅ 2(benzene) (bpp = 1,3-bis(4-pyridyl)propane). Inorg. Chim. Acta. 370, 82–88 (2011)

    Article  Google Scholar 

  40. Nakashima, S.: In: Sharma, V.K., Klingelhofer, G., Nishida, T. (eds.) Mössbauer spectroscopy: Applications in chemistry, biology, and nanotechnology, pp 143–151. Wiley, Hoboken (2013)

  41. Paulsen, H., Trautwein, A.X.: Density functional theory calculations for spin crossover complexes. Top. Curr. Chem. 235, 197–219 (2004)

    Article  Google Scholar 

  42. Reiher, M.: Theoretical study of the Fe(phen)2(NCS)2 spin-crossover complex with reparametrized density functionals. Inorg. Chem. 41, 6928–6935 (2002)

    Article  Google Scholar 

  43. Conradie, J., Ghosh, A.: DFT calculations on the spin-crossover complex Fe(salen)(NO):? A quest for the best functional. J. Phys. Chem. B 111, 12621–12624 (2007)

    Article  Google Scholar 

  44. Ye, S., Neese, F.: Accurate modeling of spin-state energetics in spin-crossover systems with modern density functional theory. Inorg. Chem. 49, 772–774 (2010)

    Article  Google Scholar 

  45. Cirera, J., Paesani, F.F.: Theoretical prediction of spin-crossover temperatures in ligand-driven light-induced spin change systems. Inorg. Chem. 51, 8194–8201 (2012)

    Article  Google Scholar 

  46. Cirera, J., Babin, V., Paesani, F.: Theoretical modeling of spin crossover in metal–organic frameworks: [Fe(pz)2Pt(CN)4] as a case study . Inorg. Chem. 53, 11020–11028 (2014)

    Article  Google Scholar 

  47. Neese, N.: ORCA, version 3.0, Max planck institute for chemical energy conversion. Ruhr, Germany (2013)

    Google Scholar 

  48. Kaneko, M., Tokinobu, S., Nakashima, N.: Density functional study on spin-crossover phenomena of assembled complexes, [Fe(NCX)2(bpa)2]n (X = S, Se, BH3; bpa = 1,2-bis(4-pyridyl)ethane). Chem. Lett. 42, 1432–1434 (2013)

    Article  Google Scholar 

  49. Kaneko, M.: Nakashima, computational study on thermal spin-crossover behavior for coordination polymers possessing trans-Fe(NCS)2(pyridine)4 unit. Bull. Chen. Soc. Jpn. 88, 1164–1170 (2015)

    Article  Google Scholar 

  50. Wu, X.-R., Shi, H.-Y., Wei, R.-J., Li, J., Zheng, L.-S., Tao, J.: Coligand and solvent effects on the architectures and spin-crossover properties of (4,4)-connected iron(II) coordination polymers. Inorg. Chem. 54, 3773–3780 (2015)

    Article  Google Scholar 

  51. Yoshinami, K., Kaneko, M., Yasuhara, H., Nakashima, S.: Effect of methyl substituent on the spin state of iron(II) assembled complex using 1,4-bis(4-pyridyl)benzene. Radioisotopes 66, 625–632 (2017)

    Article  Google Scholar 

  52. Iwai, S., Yoshinami, K., Nakashima, N.: Structure and spin state of iron(II) assembled complexes using 9,10-Bis(4-pyridyl)anthracene as bridging ligand. Inorganics 5, 61 (2017)

    Article  Google Scholar 

  53. Kahn, O., Martinez, C.J.: Spin-transition polymers: From Molecular materials toward memory devices. Science 297, 44–48 (1998)

    Article  ADS  Google Scholar 

  54. Galve, N.C., Coronado, E., Giménez-Marqués, M., Espallargas, G.M. A: Mixed-ligand approach for spin-crossover modulation in a linear FeII coordination polymer. Inorg. Chem. 53, 4482–4490 (2014)

    Article  Google Scholar 

  55. Dote, H., Yasuhara, H., Nakashima, S.: Crystal structure and spin state of mixedcrystals of iron with NCS and NCBH3 for the assembled complexes bridged by 1,3-Bis(4-pyridyl)propanes. J. Radioanal. Nucl. Chem. https://doi.org/10.1007/s10967-014-3676-y (2014)

  56. Dote, H., Kaneko, M., Inoue, K., Nakashima, S.: Synthesis of anion-mixed crystals of the assembled complexes bridged by 1,2-Bis(4-pyridyl)ethane and ligand field of Fe(NCS)(NCBH3) unit. Bull. Chem. Soc. Jpn. 91, 71–81 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Nakashima.

Additional information

This article is part of the Topical Collection on Proceedings of the 4th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2018), Zadar, Croatia, 27-31 May 2018

Edited by Mira Ristic and Stjepko Krehula

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakashima, S., Kaneko, M., Yoshinami, K. et al. On/off spin-crossover phenomenon and control of the transition temperature in assembled Iron(II) complexes. Hyperfine Interact 239, 39 (2018). https://doi.org/10.1007/s10751-018-1512-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-018-1512-4

Keywords

Navigation