Skip to main content
Log in

Estimation of ΔR/R values by benchmark study of the Mössbauer Isomer shifts for Ru, Os complexes using relativistic DFT calculations

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The present study applies all-electron relativistic DFT calculation with Douglas-Kroll-Hess (DKH) Hamiltonian to each ten sets of Ru and Os compounds. We perform the benchmark investigation of three density functionals (BP86, B3LYP and B2PLYP) using segmented all-electron relativistically contracted (SARC) basis set with the experimental Mössbauer isomer shifts for 99Ru and 189Os nuclides. Geometry optimizations at BP86 theory of level locate the structure in a local minimum. We calculate the contact density to the wavefunction obtained by a single point calculation. All functionals show the good linear correlation with experimental isomer shifts for both 99Ru and 189Os. Especially, B3LYP functional gives a stronger correlation compared to BP86 and B2PLYP functionals. The comparison of contact density between SARC and well-tempered basis set (WTBS) indicated that the numerical convergence of contact density cannot be obtained, but the reproducibility is less sensitive to the choice of basis set. We also estimate the values of ΔR/R, which is an important nuclear constant, for 99Ru and 189Os nuclides by using the benchmark results. The sign of the calculated ΔR/R values is consistent with the predicted data for 99Ru and 189Os. We obtain computationally the ΔR/R values of 99Ru and 189Os (36.2 keV) as 2.35×10−4 and −0.20×10−4, respectively, at B3LYP level for SARC basis set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gütlich, P., Link, R., Trautwein, A.: Mössbauer Spectroscopy and Transition Metal Chemistry. Springer, Heidelberg (1978)

    Book  Google Scholar 

  2. Neese, F., Petrenko, T.: Quantum chemistry and Mössbauer spectroscopy. In: Gütlich, P., Bill, E., Trautwein, A.X. (eds.) Mössbauer Spectroscopy and Transition Metal Chemistry –Fundamentals and Applications, pp 137–200. Springer, Heidelberg (2011)

  3. Kaneko, M., Miyashita, S., Nakashima, S.: Benchmark study of Mössbauer isomer shifts of Eu and Np complexes by relativistic DFT calculations for understanding the bonding nature of f-Block compounds. Dalton Trans. 44, 8080–8088 (2015)

    Article  Google Scholar 

  4. Kaneko, M., Miyashita, S., Nakashima, S.: Bonding study on the chemical separation of am(III) from eu(III) by S-, S-, and O-Donor ligands by means of all-electron ZORA-DFT calculation. Inorg. Chem. 54, 7103–7109 (2015)

    Article  Google Scholar 

  5. Zhang, Y., Mao, J., Oldfield, E.: 57Fe Mössbauer isomer shifts of heme protein model systems: electronic structure calculations. J. Am. Chem. Soc. 124, 7829–7839 (2002)

    Article  Google Scholar 

  6. Neese, F.: Prediction and interpretation of the 57Fe isomer shifts in Mössbauer spectra by density functional theory. Inorg. Chim. Acta. 337, 181–192 (2002)

    Article  Google Scholar 

  7. Nemykin, V. N., Hadt, R. G.: Influence of hartree-fock exchange on the calculated Mössbauer isomer shifts and quadrupole splittings in ferrocene derivatives using density functional theory. Inorg. Chem. 45, 8297–8307 (2006)

    Article  Google Scholar 

  8. Filatov, M.: First principles calculation of Mössbauer isomer shift. Coord. Chem. Rev. 253, 594–605 (2009)

    Article  Google Scholar 

  9. Römelt, M., Ye, S., Neese, F.: Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: meta-GGA and double-hybrid functionals. Inorg. Chem. 48, 784–785 (2009)

    Article  Google Scholar 

  10. Neese, F.: The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2012)

    Article  Google Scholar 

  11. Nakajima, T., Hirao, K.: The Douglas-Kroll-Hess approach. Chem. Rev. 112, 385–402 (2012)

    Article  Google Scholar 

  12. Visscher, L., Dyall, K. G.: Dirac-Fock Atomic electronic structure calculations using differenct nuclear charge distributions. Atom. Data Nucl. Data Tabl. 67, 207–224 (1997)

    Article  ADS  Google Scholar 

  13. Filatov, M.: On the calculation of Mössbauer isomer shift. J. Chem. Phys. 127, 0841011–0841018 (2007)

    Article  Google Scholar 

  14. Koch, K., Koepernik, K., Van Neck, D., Rosner, H., Cottenier, S.: Electron penetration into the nucleus and its effect on the quadrupole interaction. Phys. Rev. A 81, 0325071–03250716 (2010)

  15. Pantazis, D. A., Chen, X., Landis, C. R., Neese, F.: All-Electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4, 908–919 (2008)

    Article  Google Scholar 

  16. Ahlrichs, R., May, K.: Contracted all-electron gaussian basis sets for atoms Rb to Xe. Phys. Chem. Chem. Phys. 2, 943–945 (2000)

    Article  Google Scholar 

  17. Neese, F.: An improvement of the resolution of the identity approximation for the formation of the coulomb matrix. J. Comput. Chem. 35, 1740–1747 (2003)

    Article  Google Scholar 

  18. Neese, F., Wennmohs, F., Hansen, A., Becker, U.: Efficient, approximate and parallel hartree-fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree-Fock exchange. Chem. Phys. 356, 98–109 (2009)

    Article  ADS  Google Scholar 

  19. Hardgrove, G. L., Templeton, D. H.: The crystal structure of ruthenocene. Acta Cryst. 12, 28–32 (1959)

    Article  Google Scholar 

  20. Bobyens, J. C., Levendis, D. C., Bruce, A. I., Williams, M. L.: Crystal structure of Osmocene, Os(η-C5 H 5)2. J. Crystallogr. Spectrosc. Res. 16, 13244–13249 (1986)

    Article  Google Scholar 

  21. Biner, B., Burgi, H. B., Ludi, A., Rohr, C.: Crystal and molecular structures of [Ru(byp)3](PF6)3 and [Ru(bpy)3](PF6)2 at 105 K. J. Am. Chem. Soc. 114, 5197–5203 (1992)

    Article  Google Scholar 

  22. Constable, E. C., Raithby, P. R., Smit, D. N.: The x-ray crystal structure of tris(2,2’-bipyridine)osmium(II) Hexafluorophosphate. Polyhedron 8, 367–369 (1989)

    Article  Google Scholar 

  23. Kaindl, G., Potzel, W., Wagner, F., Zahn, U., Mössbauer, R. L.: Isomer shifts of the 90 keV γ-rays of 99ru in ruthenium compounds. Z. Physik 226, 103–115 (1969)

    Article  ADS  Google Scholar 

  24. Potzel, W., Wagner, F. E., Zahn, U., Mössbauer, R. L., Danon, J.: Isomer shifts and chemical bonding in ruthenium complexes. Z. Physik 240, 306–313 (1970)

    Article  ADS  Google Scholar 

  25. Wagner, F. E., Kucheida, D., Zahn, U., Kaindl, G.: Mössbauer isomer shifts and quadrupole splittings in osmium compounds. Z. Physik 266, 223–232 (1974)

    Article  ADS  Google Scholar 

  26. Huzinaga, S., Miguel, B.: A comparison of the geometrical sequence formula and the well-tempered formulas for generating GTO basis orbital exponents. Chem. Phys. Lett. 175, 289–291 (1990)

    Article  ADS  Google Scholar 

  27. Huzinaga, S., Klobukowski, M.: Well-Tempered Gaussian basis sets for the calculation of matix Hartree-Fock wavefunctions. Chem. Phys. Lett. 212, 260–264 (1993)

    Article  ADS  Google Scholar 

  28. Kurian, R., Filatov, M.: DFT approach to the calculation of Mössbauer isomer shifts. J. Chem. Theory Comput. 4, 278–285 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Nakashima.

Additional information

This article is part of the Topical Collection on Proceedings of the 15th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2016), 13–18 November 2016, Panama City, Panama

Edited by Juan A. Jaén

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneko, M., Yasuhara, H., Miyashita, S. et al. Estimation of ΔR/R values by benchmark study of the Mössbauer Isomer shifts for Ru, Os complexes using relativistic DFT calculations. Hyperfine Interact 238, 36 (2017). https://doi.org/10.1007/s10751-017-1413-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-017-1413-y

Keywords

Navigation