Skip to main content
Log in

Unraveling the role of top predators and macrophytes in mediterranean ponds: the ecological significance of rotifers

  • ROTIFERA XVI
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Mediterranean area includes a wide variety of shallow water bodies which are recognized as hotspots of biodiversity. Here, we present the results of our study conducted on twenty-two small ponds, divided in two groups, fish free and fish stocked, along the coast and islands of the Adriatic Sea, in the Mediterranean. The main aims covered (1) the assessment of zooplankton structural and functional traits; (2) the impact of top predators (invasive mosquitofish) and macrophyte coverage on zooplankton diversity, abundance, and biomass. Overall, rotifers dominated in zooplankton diversity and abundance; it is likely that due to their small size they were not under direct fish predation. Rotifers prevailed in fish-stocked ponds, where their assemblage was shaped by food availability and macrophyte coverage. Macrophytes had a dual influence on rotifers: dense macrophyte coverage supported a high density of littoral species, while low macrophyte coverage provided a profitable condition for planktonic rotifers. In fish-stocked ponds, cladoceran and copepod density, biomass, and diversity were strongly reduced in relation to fish-free ponds. This study revealed high zooplankton diversity (77 taxa) in a Mediterranean region, structured by habitat heterogeneity and predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Dražina, T., Purgar, M., Kuczyńska-Kippen, N., Μichaloudi, E., Stamou, G., Bilić, Ž., Kahriman, K., and Špoljar, M. (2023). Datasets and code for Dražina et al. 2023: Unraveling the Role of Top Predators and Macrophytes in Mediterranean Ponds: The Ecological Significance of Rotifers [Data set]. Zenodo. https://doi.org/https://doi.org/10.5281/zenodo.10439335.

References

  • Alcaraz, C. & E. García-Berthou, 2007. Life history variation of invasive mosquitofish (Gambusia holbrooki) along a salinity gradient. Biological Conservation 139: 83–92. https://doi.org/10.1016/j.biocon.2007.06.006.

    Article  Google Scholar 

  • Antón-Pardo, M. & X. Armengol, 2010. Zooplankton community from restored peridunal ponds in the Mediterranean region (L’Albufera Natural Park, Valencia, Spain). Limnetica 29: 133–144.

    Article  Google Scholar 

  • Antón-Pardo, M. & X. Armengol, 2014. Aquatic invertebrate assemblages in ponds from coastal Mediterranean wetlands. International Journal of Limnology 50: 217–230. https://doi.org/10.1051/limn/2014089.

    Article  Google Scholar 

  • APHA, 1995. Standard methods for the examination of water and wastewater, 19th ed. American Public Health Association Inc.:

    Google Scholar 

  • Błędzki, L. A. & J. I. Rybak, 2016. Crustacean Zooplankton of Europe. Cladocera & Copepoda (Calanoida, Cyclopoida). Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis, Springer:

    Google Scholar 

  • Braun-Blanquet, J., 1932. Plant sociology: The study of plant communities, McGraw-Hill:

    Google Scholar 

  • Brucet, S., D. Boix, L. W. Nathansen, X. D. Quintana, E. Jensen, D. Balayla, M. Meerhoff & E. Jeppesen, 2012. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change. PLoS ONE 7: e30877. https://doi.org/10.1371/journal.pone.0030877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brucet, S., Ü. N. Tavşanoğlu, A. Özen, E. E. Levi, G. Bezirci, A. I. Çakıroğlu, E. Jeppesen, J.-C. Svenning, Z. Ersoy & M. Beklioğl, 2017. Size-based interactions across trophic levels in food webs of shallow Mediterranean lakes. Freshwater Biology 62: 1819–1830. https://doi.org/10.1111/fwb.12997.

    Article  Google Scholar 

  • Burks, R., E. Jeppesen & D. Lodge, 2001. Pelagic prey and benthic predators: impact of odonate predation on Daphnia. Journal of the North American Benthological Society 20: 615–628.

    Article  Google Scholar 

  • Celewicz-Goødyn, S. & N. Kuczyńska-Kippen, 2017. Ecological value of macrophyte cover increating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies. PLoS ONE 12: e0177317. https://doi.org/10.1371/journal.pone.0177317.

    Article  CAS  Google Scholar 

  • Céréghino, R., J. Biggs, S. Declerck & B. Oertli, 2008. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6. https://doi.org/10.1007/s10750-007-9225-8.

    Article  Google Scholar 

  • Céréghino, R., D. Boix, H. M. Cauchie, K. Martens & B. Oertli, 2014. The ecological role of ponds in a changing world. Hydrobiologia 723: 1–6. https://doi.org/10.1007/s10750-013-1719-y.

    Article  Google Scholar 

  • Compte, J., M. Montenegro, A. Ruhí, S. Gascón, J. Sala & D. Boix, 2016. Microhabitat selection and diel patterns of zooplankton in a Mediterranean temporary pond. Hydrobiologia 766: 201–213. https://doi.org/10.1007/s10750-015-2455-2.

    Article  Google Scholar 

  • Council of the European Communities, 1992. Council directive 92/43/EEC of 21. May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities 35: 7–50.

    Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747. https://doi.org/10.1111/j.1461-0248.2012.01794.x.

    Article  PubMed  Google Scholar 

  • De Smet, W. H. & R. Pourriot, 1997. Rotifera, Volume 5: The Dicranophoridae (Monogonota) and The Ituridae (Monogonota), SPB Academic Publishing:

    Google Scholar 

  • Declerck, S., J. Vandekerkhove, L. Johansson, K. Muylaert, J. Conde-Porcuna, M. Van Der Gucht, K. Perez-Martınez, T. Lauridsen, K. Schwenk, G. Zwart, W. Rommens, J. Lopez-Ramos, E. Jeppesen, W. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915. https://doi.org/10.1890/04-0373.

    Article  Google Scholar 

  • Della Bella, V. & L. Mancini, 2009. Freshwater diatom and macroinvertebrate diversity of coastal permanent ponds along a gradient of human impact in a Mediterranean eco-region. Hydrobiologia 634: 25–41. https://doi.org/10.1007/s10750-009-9890-x.

    Article  Google Scholar 

  • Dray, S., G. Blanchet, D. Borcard, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi & H. H. Wagner, 92022. Adespatial: Multivariate multiscale spatial analysis version 0.3-20. https://mirror.epn.edu.ec/CRAN/web/packages/adespatial/adespatial.pdf.

  • Dražina, T., M. Špoljar & M. Miliša, 2022. Temporary ponds in mediterranean islands: Oases of biodiversity. In Pešić, V., D. Milošević & M. Miliša (eds), Small water bodies of the western Balkans Springer, Cham: 93–108. https://doi.org/10.1007/978-3-030-86478-1_5.

    Chapter  Google Scholar 

  • Dumont, H. J., I. Van De Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  PubMed  Google Scholar 

  • Ejsmont-Karabin, J., 2012. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Polish Journal of Ecology 60: 339–350.

    Google Scholar 

  • Ersoy, Z., S. Brucet, M. Bartrons & T. Mehner, 2019. Short-term fish predation destroys resilience of zooplankton communities and prevents recovery of phytoplankton control byzooplankton grazing. PLoS ONE 14: e0212351. https://doi.org/10.1371/journal.pone.0212351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florencio, M., L. Serrano, C. Gómez-Rodríguez, A. Millán & C. Díaz-Paniagua, 2009. Inter- and intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in Mediterranean temporary ponds. Hydrobiologia 634: 167–183. https://doi.org/10.1007/s10750-009-9897-3.

    Article  Google Scholar 

  • Gálvez, Á., J. A. Aguilar-Alberola, X. Armengol, F. Bonilla, S. Iepure, J. S. Monrós, C. Olmo, C. Rojo, J. Rueda, R. Rueda, M. Sasa & F. Mesquita-Joanes, 2020. Environment and space rule, but time also matters for the organization of tropical pond metacommunities. Frontiers in Ecology and Evolution 8: 558833. https://doi.org/10.3389/fevo.2020.558833.

    Article  Google Scholar 

  • Gascón, S., D. Boix, J. Sala & X. D. Quintana, 2008. Relation between macroinvertebrate life strategies and habitat traits in Mediterranean salt marsh ponds (Empordà wetlands, NE Iberian Peninsula). Hydrobiologia 597: 71–83. https://doi.org/10.1007/s10750-007-9215-x.

    Article  Google Scholar 

  • González Sagrario, M. A., M. De Losángeles, E. Balseiro, R. Ituarte & E. Spivak, 2009. Macrophytes as refuge or risky area for zooplankton: A balance set by littoral predacious macroinvertebrates. Freshwater Biology 54: 1042–1053. https://doi.org/10.1111/j.1365-2427.2008.02152.x.

    Article  Google Scholar 

  • Gutierrez, M. F., Ü. N. Tavşanoğlu, N. Vidal, J. Yu, F. Teixeira-de Mello, A. I. Çakiroglu, H. He, Z. Liu & E. Jeppesen, 2018. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 813: 237–255. https://doi.org/10.1007/s10750-018-3529-8.

    Article  Google Scholar 

  • Haiahem, D., L. Touati, N. Baaziz, F. Samraoui, A. H. Alfarhan & B. Samraoui, 2017. Impact of eastern mosquitofish, Gambusia holbrooki, on temporary ponds: Insights on how predation may structure zooplankton communities. Zoology and Ecology. https://doi.org/10.1080/21658005.2017.1337372.

    Article  Google Scholar 

  • Hill, M. J., H. M. Greaves, C. D. Sayer, C. Hassall, M. Milin, V. S. Milner, L. Marazzi, R. Hall, L. R. Harper, I. Thornhill, R. Walton, J. Biggs, N. Ewald, A. Law, N. Willby, J. C. White, R. A. Briers, K. L. Mathers, M. J. Jeffries & P. J. Wood, 2021. Pond ecology and conservation: research priorities and knowledge gaps. Ecosphere 12: e03853. https://doi.org/10.1002/ecs2.3853.

    Article  Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. Garcia-Alonso, S. L. Amsinck, J. C. Paggi, S. Jose de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147. https://doi.org/10.1007/s10750-011-0645-0.

    Article  Google Scholar 

  • Jensen, E., S. Brucet, M. Meerhoff, L. Nathansen & E. Jeppesen, 2010. Community structure and diel migration of zooplankton in shallow brackish lakes: Role of salinity and predators. Hydrobiologia 646: 215–229. https://doi.org/10.1007/s10750-010-0172-4.

    Article  CAS  Google Scholar 

  • Jeppesen, E., 1998. The ecology of shallow lakes – Trophic Interactions in the Pelagial, University of Copenhagen:

    Google Scholar 

  • Jeppesen, E., M. Beklioğlu, K. Özkan & Z. Akyürek, 2020. Salinization increase due to climate change will have substantial negative effects on inland waters: A call for multifaceted research at the local and global scale. The Innovation 1: 100030. https://doi.org/10.1016/j.xinn.2020.100030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. Sousa Freitas, M. Kernan, M. Søndergaard & M. Beklioğlu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227. https://doi.org/10.1007/s10750-014-2169-x.

    Article  Google Scholar 

  • Jeppesen, E., P. Nõges, T. A. Davidson, J. Haberman, T. Nõges, K. Blank, T. L. Lauridsen, M. Søndergaard, C. Sayer, R. Laugaste, L. S. Johansson, R. Bjerring & S. L. Amsinck, 2011. Zooplankton as indicators in lakes: A scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297. https://doi.org/10.1007/s10750-011-0831-0.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen, 1998. The structuring role of submerged macrophytes in lakes. Ecological Studies 131: 1–427.

    Google Scholar 

  • Jiménez-Melero, R., D. Jarma, J. D. Gilbert, J. M. Ramírez-Pardo & F. Guerrero, 2023. Cryptic diversity in a saline Mediterranean pond: the role of salinity and temperature in the emergence of zooplankton egg banks. Hydrobiologia. https://doi.org/10.1007/s10750-023-05225-3.

    Article  Google Scholar 

  • Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Crustacea) variations in the process of lake eutrophication. I. Structural and quantitative features. Ekolia Polska 33: 567–616.

    Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Gebrüder Borntraeger, München

  • Kuczyńska-Kippen, N. & A. Basińska, 2014. Habitat as the most important influencing factor for the rotifer community structure at landscape level. International Review of Hydrobiology 99: 58–64. https://doi.org/10.1002/iroh.201301704.

    Article  Google Scholar 

  • Kuczyńska-Kippen, N., M. Špoljar, M. Mleczek & C. Zhang, 2021. Elodeids, but not helophytes, increase community diversity and reduce trophic state: Case study with rotifer indices in field ponds. Ecological Indicators 128: 107829. https://doi.org/10.1016/j.ecolind.2021.107829.

    Article  Google Scholar 

  • Kuczyńska-Kippen, N., M. Špoljar, C. Zhang & M. Pronin, 2020. Zooplankton functional traits as a tool to assess latitudinal variation in the northern-southern temperate European regions during spring and autumn seasons. Ecological Indicators 117: 106629. https://doi.org/10.1016/j.ecolind.2020.106629.

    Article  CAS  Google Scholar 

  • Landeka, N., M. Podnar & D. Jelić, 2015. New data on the taxonomic status and distribution of Gambusia sp. in Croatia and Bosnia and Herzegovina. Periodicum Biologorum 117: 415–424. https://doi.org/10.18054/pb.2015.117.3.3143.

    Article  Google Scholar 

  • Mamani, A., M. L. Koncurat & M. Boveri, 2019. Combined effects of fish and macroinvertebrate predation on zooplankton in a littoral mesocosm experiment. Hydrobiologia 829: 19–29. https://doi.org/10.1007/s10750-018-3712-y.

    Article  CAS  Google Scholar 

  • Marchese, C., 2015. Biodiversity hotspots: A shortcut for a more complicated concept. Global Ecology and Conservation 3: 297–309. https://doi.org/10.1016/j.gecco.2014.12.008.

    Article  Google Scholar 

  • Margaritora, F. G., O. Ferrara & D. Vagaggini, 2001. Predatory impact of the mosquitofish (Gambusia holbrooki Girard) on zooplanktonic populations in a pond at Tenuta di Castelporziano. (Rome, Central Italy). Journal of Limnology 60: 189–193. https://doi.org/10.4081/jlimnol.2001.1.189.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. T. De Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007a. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897. https://doi.org/10.1111/j.1365-2486.2007.01408.x.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. T. De Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007b. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021. https://doi.org/10.1111/j.1365-2427.2007.01748.x.

    Article  Google Scholar 

  • Moss, B., 2018. Ecology of freshwaters: Earth’s bloodstream, 5th ed. Wiley:

    Google Scholar 

  • Moss, B., D. Stephen, D. M. Balayla, E. Bécares, S. E. Collings, C. Fernández-Aláez, M. Fernández-Aláez, C. Ferriol, P. García, J. Gomá, M. Gyllström, L.-A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, V. Russell, A. Ståhl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentín, W. J. Van de Bund, E. Van Donk, E. Vicente & M. J. Villena, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49: 1633–1649. https://doi.org/10.1111/j.1365-2427.2004.01304.x.

    Article  CAS  Google Scholar 

  • Moustaka-Gouni, M., E. Michaloudi & U. Sommer, 2014. Modifying the PEG model for Mediterranean lakes – No biological winter and strong fish predation. Freshwater Biology 59: 1136–1144. https://doi.org/10.1111/fwb.12335.

    Article  Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. da Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858. https://doi.org/10.1038/35002501.

    Article  CAS  PubMed  Google Scholar 

  • Nogrady, T., R. Pourriot & H. Segers, 1995. Rotifera, Part 3: The Notommatidae and the Scaridiidae, SPB Academic Publishing:

    Google Scholar 

  • Nusch, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv Für Hydrobiologie 14: 14–36.

    CAS  Google Scholar 

  • Obertegger, U. & R. L. Wallace, 2023. Trait-based research on Rotifera: The holy grail or just messy? Water 15: 1459. https://doi.org/10.3390/w15081459.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, H. Wagner. (2013). Package ‘vegan’. Community ecology package, version 2, 1–295.

  • R Core Team. (2022). R: A language and environment for statistical computing version 4.2.2. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Ricci, C., 1998. Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia 387(388): 321–326.

    Article  Google Scholar 

  • RStudio Team. (2022). RStudio: Integrated development environment for R version 4.2.2. RStudio, PBC. Boston, MA. http://www.rstudio.com/.

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculations of plankton rotifers. Archiv Für Hydrobiologie 8: 71–76.

    Google Scholar 

  • Sahuquillo, M. & M. R. Miracle, 2010. Crustacean and rotifer seasonality in a Mediterranean temporary pond with high biodiversity (Lavajo de Abajo de Sinarcas, Eastern Spain). Limnetica 29: 75–92.

  • Sahuquillo, M. & M. R. Miracle, 2013. The role of historic and climatic factors in the distribution of crustacean communities in Iberian Mediterranean ponds. Freshwater Biology 58: 1251–1266. https://doi.org/10.1111/fwb.12124.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of shallow lakes, Chapman and Hall:

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279. https://doi.org/10.1016/0169-5347(93)90254-M.

    Article  CAS  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: Various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466. https://doi.org/10.1007/s10750-007-0616-7.

    Article  CAS  Google Scholar 

  • Segers, H., 1995. Rotifera, Part 2: The lecanidae (Monogononta), SPB Academic Publishing:

    Google Scholar 

  • Smith, H. A., J. Ejsmont-Karabin, T. M. Hess & R. L. Wallace, 2009. Paradox of planktonic rotifers: Similar structure but unique trajectories in communities of the Great Masurian Lakes (Poland). Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Verhandlungen 30: 951–956.

    Google Scholar 

  • Špoljar, M., T. Dražina, J. Lajtner, M. Duić Sertić, I. Radanović, R. L. Wallace, D. Matulić & T. Tomljanović, 2018. Zooplankton assemblage in four temperate shallow waterbodies in association with habitat heterogeneity and alternative states. Limnologica 71: 51–61. https://doi.org/10.1016/j.limno.2018.05.004.

    Article  Google Scholar 

  • Špoljar, M., N. Kuczyńska-Kippen, T. Dražina, J. Fressl, I. Ternjej, T. Tomljanović, C. Zhang, M. Purgar, M. Čorkalo & L. Kekelj, 2022. Sediment as a refuge spot for planktonic crustaceans. Water 14: 1680. https://doi.org/10.3390/w14111680.

    Article  CAS  Google Scholar 

  • Špoljar, M., M. Sertić Perić, H. Wang, C. Zhang, N. Kuczyńska-Kippen, J. Fressl & Z. Ercegovac, 2021. Does the size structure of the littoral community reflect water level fluctuations in shallow waterbodies? Ecological Indicators 132: 108330. https://doi.org/10.1016/j.ecolind.2021.108330.

    Article  Google Scholar 

  • Stamou, G., M. Katsiapi, M. Moustaka-Gouni & E. Michaloudi, 2019. Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia 844: 83–103. https://doi.org/10.1007/s10750-018-3880-9.

    Article  CAS  Google Scholar 

  • Stamou, G., A. D. Mazaris, M. Moustaka-Gouni, M. Špoljar, I. Ternjej, T. Dražina, Z. Dorak & E. Michaloudi, 2022. Introducing a zooplanktonic index for assessing water quality of natural lakes in the Mediterranean region. Ecological Informatics 69: 101616. https://doi.org/10.1016/j.ecoinf.2022.101616.

    Article  Google Scholar 

  • Tavşanoğlu, Ü., A. I. Çakiroğlu, Ş Aerdoğan, M. Meerhoff, E. Jeppesen & M. Beklioglu, 2012. Sediments, not plants, offer the preferred refuge for Daphnia against fish predation in Mediterranean shallow lakes: An experimental demonstration. Freshwater Biology 57: 795–802. https://doi.org/10.1111/j.1365-2427.2012.02745.x.

    Article  Google Scholar 

  • Tavşanoğlu, Ü. N., M. Šorf, K. Stefanidis, S. Brucet, S. Türkan, H. Agasild, D. L. Baho, U. Scharfenberger, J. Hejzlar, E. Papastergiadou, R. Adrian, D. G. Angeler, P. Zingel, A. İ Çakıroğlu, A. Özen, S. Drakare, M. Søndergaard, E. Jeppesen & M. Beklioğlu, 2017. Effects of nutrient and water level changes on the composition and size structure of zooplankton communities in shallow lakes under different climatic conditions: A pan-European mesocosm experiment. Aquatic Ecology 51: 257–273. https://doi.org/10.1007/s10452-017-9615-6.

    Article  CAS  Google Scholar 

  • Vannini, A., G. Bruni Ricciardi, L. Platania, E. Mori & E. Tricarico, 2017. Gambusia holbrooki, the ‘tadpolefish’: The impact of its predatory behaviour on four protected species of European amphibians. Aquatic Conservation 28: 476–484. https://doi.org/10.1002/aqc.2880.

    Article  Google Scholar 

  • Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera: Volume 1 – Biology, ecology and systematics, 2nd ed. Backhuys Publishers:

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology lake and reservoir ecosystems, Academic Press:

    Google Scholar 

  • Williams, A. E. & B. Moss, 2003. Effects of different fish species and biomass on plankton interactions in a shallow lake. Hydrobiologia 491: 331–346.

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Ana Štih and other member of Association Hyla (Croatia) for collecting some of the samples, as part of the project Mediterranean Island Wetlands Project (MedIsWet). Furthermore, we are very grateful to Antun Alegro (Department of Biology, Faculty of Science, University of Zagreb, Croatia) and Tomislav Hudina (Association BIOM, Croatia), for the identification of macrophytes from sampled ponds. And above all, we want to thank the anonymous reviewers for their hard work and valuable advice that helped improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tvrtko Dražina.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest/competing interests. The sponsors had no role in the design, execution, interpretation, or writing of the study.

Ethical approval

No collecting permits were required for this study. None of the specimens that we collected are endangered or threatened. Sampling and processing protocols followed appropriate guidelines established by the local municipalities.

Additional information

Handling editor: Sidinei M. Thomaz

Guest editors: Maria Špoljar, Diego Fontaneto, Elizabeth J. Walsh and Natalia Kuczyńska-Kippen / Diverse Rotifers in Diverse Ecosystems

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2024_5484_MOESM1_ESM.xlsx

Supplementary file1 (XLSX 13 KB) Table 1 Coordinates, morphometry, and some biotic features of the studied east Adriatic ponds (Croatia, Europe). FP fish-stocked ponds, FFP fish-free ponds, em emergent macrophytes, flo floating macrophytes, sub submerged macrophytes

10750_2024_5484_MOESM2_ESM.xlsx

Supplementary file2 (XLSX 16 KB) Table 2 List of zooplankton taxa from the investigated ponds (Croatia, Europe), with overall frequency of occurrence (F). I Istrian Peninsula, R Rab Island, DO Dugi otok Island, K Korčula Island

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dražina, T., Purgar, M., Kuczyńska-Kippen, N. et al. Unraveling the role of top predators and macrophytes in mediterranean ponds: the ecological significance of rotifers. Hydrobiologia 851, 3149–3163 (2024). https://doi.org/10.1007/s10750-024-05484-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-024-05484-8

Keywords

Navigation