Skip to main content
Log in

Early stage ecological communities on artificial algae showed no difference in diversity and abundance under ocean acidification

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Marine habitat-forming species create structurally complex habitats that host macroinvertebrate communities characterized by remarkable abundance and species richness. These habitat-forming species also play a fundamental role in creating favourable environmental conditions that promote biodiversity. The deployment of artificial structures is becoming a common practice to help offset habitat loss although with mixed results. This study investigated the suitability of artificial flexible turfs mimicking the articulated coralline algae (mimics) as habitat providers and the effect of ocean acidification (OA) on early stage ecological communities associated to flexible mimics and with the mature community associated to Ellisolandia elongata natural turfs. The mimics proved to be a suitable habitat for early stage communities. During the OA mesocosms experiment, the two substrates have been treated and analysed separately due to the difference between the two communities. For early stage ecological communities associated with the mimics, the lack of a biologically active substrate does not exacerbate the effect of OA. In fact, no significant differences were found between treatments in crustaceans, molluscs and polychaetes diversity and abundance associated with the mimics. In mature communities associated with natural turfs, buffering capability of E. elongata is supporting different taxonomic groups, except for molluscs, greatly susceptible to OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera, M. A., B. R. Broitman & M. Thiel, 2014. Spatial variability in community composition on a granite breakwater versus natural rocky shores: lack of microhabitats suppresses intertidal biodiversity. Marine Pollution Bulletin 87(1–2): 257–268.

    Article  CAS  PubMed  Google Scholar 

  • Airoldi, L., X. Turon, S. Perkol-Finkel & M. Rius, 2015. Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Diversity and Distributions 21: 755–768.

    Article  Google Scholar 

  • Anderson, M. J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58: 626–639.

    Article  Google Scholar 

  • Andersson, A. J., F. T. Mackenzie & N. R. Bates, 2008. Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Marine Ecology Progress Series 373: 265–273.

    Article  ADS  CAS  Google Scholar 

  • Barclay, K. M., B. Gaylord, B. M. Jellison, P. Shukla, E. Sanford & L. R. Leighton, 2019. Variation in the effects of ocean acidification on shell growth and strength in two intertidal gastropods. Marine Ecology Progress Series 626: 109–121. https://doi.org/10.3354/meps13056.

    Article  ADS  CAS  Google Scholar 

  • Benedetti-Cecchi, L. & F. Cinelli, 1994. Recovery of patches in an assemblage of geniculate coralline algae: variability at different successional stages. Marine Ecology Progress Series 110: 9–9.

    Article  ADS  Google Scholar 

  • Bennett, S., T. Wernberg, T. De Bettignies, G. A. Kendrick, R. J. Anderson, J. J. Bolton & H. C. Christie, 2015. Canopy interactions and physical stress gradients in subtidal communities. Ecology Letters 18: 677–686.

    Article  PubMed  Google Scholar 

  • Chapman, M. G. & D. J. Blockley, 2009. Engineering novel habitats on urban infrastructure to increase intertidal biodiversity. Oecologia 161: 625–635.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Crain, C. M., B. S. Halpern, M. W. Beck & C. V. Kappel, 2009. Understanding and managing human threats to the coastal marine environment. The Year in Ecology and Conservation Biology 1162: 39–62.

    Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegils and their prey. Ecology 63: 1802–1813.

    Article  Google Scholar 

  • Davenport, J., A. Butler & A. Cheshire, 1999. Epifaunal composi- tion and fractal dimensions of marine plants in relation to emersion. Journal of the Marine Biological Association UK 79: 351–355.

    Article  Google Scholar 

  • Díaz-Castañeda, V., T. E. Cox, F. Gazeau, S. Fitzer, J. Delille, S. Alliouane & J.-P. Gattuso, 2019. Ocean acidification affects calcareous tube growth in adults and reared offspring of serpulid polychaetes. Journal of Experimental Biology 222: jeb196543.

    Article  PubMed  Google Scholar 

  • Dickson, A. G. & F. J. Millero, 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Research Part A. Oceanographic Research Papers 34: 1733–1743.

    Article  CAS  Google Scholar 

  • Dommasnes, A., 1969. On the fauna of Corallina officinalis L. in western Norway. Sarsia 38: 71–86.

    Article  Google Scholar 

  • Downes, S. & R. Shine, 1998. Heat, safety or solitude? Using habitat selection experiments to identify a lizard’s priorities. Animal Behaviour 55(5): 1387–1396.

    Article  CAS  PubMed  Google Scholar 

  • Dye, A. H., 1993. Recolonization of intertidal macroalgae in relation to gap size and molluscan herbivory on a rocky shore on the east coast of southern Africa. Marine Ecology Progress Series 95: 263–271.

    Article  ADS  Google Scholar 

  • Ellner, S. P., E. McCauley, B. E. Kendall, C. J. Briggs, P. R. Hosseini, S. N. Wood & W. W. Murdoch, 2001. Habitat structure and population persistence in an experimental community. Nature 412(6846): 538–543.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Esquete, P. & V. Fernandez-Gonzalez, 2016. Description, systematics and ecology of a new tanaidacean (Crustacea, Peracarida) species from mediterranean fish farms. Helgoland Marine Research 70: 27.

    Article  Google Scholar 

  • Falkenberg, L. J., E. Scanes, J. Ducker & P. M. Ross, 2021. Biotic habitats as refugia under ocean acidification. Conservation Physiology 9: coab077.

    Article  PubMed  PubMed Central  Google Scholar 

  • Firth, L. B., K. A. Browne, A. M. Knights, S. J. Hawkins & R. Nash, 2016. Eco-engineered rock pools: a concrete solution to biodiversity loss and urban sprawl in the marine environment. Environmental Research Letters 11(9): 094015.

    Article  ADS  Google Scholar 

  • Fitzer, S., P. Chung & F. Maccherozzi, 2016. Biomineral shell formation under ocean acidification: a shift from order to chaos. Scientific Reports 6: 21076. https://doi.org/10.1038/srep21076.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrard, S. L., M. C. Gambi, M. B. Scipione, F. P. Patti, M. Lorenti, V. Zupo, D. M. Paterson & M. C. Buia, 2014. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. Journal of Experimental Marine Biology and Ecology. 461: 31–38.

    Article  Google Scholar 

  • Gazeau, F., 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters. 34: L07603.

    Article  ADS  Google Scholar 

  • Gazeau, F., L. M. Parker & S. Comeau, 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160: 2207–2245. https://doi.org/10.1007/s00227-013-2219-3.

    Article  CAS  Google Scholar 

  • Guy-Haim, T., J. Silverman, M. Wahl, J. Aguirre, F. Noisette & G. Rilov, 2020. Epiphytes provide micro-scale refuge from ocean acidification. Marine Environmental Research 161: 105093.

    Article  CAS  PubMed  Google Scholar 

  • Hall-Spencer, J. M., R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S. M. Turner & M. C. Buia, 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200): 96–99.

    Article  ADS  CAS  PubMed  Google Scholar 

  • He, Q., M. D. Bertness & A. H. Altieri, 2013. Global shifts towards positive species interactions with increasing environmental stress. Ecology Letters 16: 695–706.

    Article  PubMed  Google Scholar 

  • Heck, K. L., Jr. & G. S., Wetstone, 1977. Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. Journal of Biogeography 4(2): 135–142.

    Article  Google Scholar 

  • Heery, E. C., M. J. Bishop, L. P. Critchley, A. B. Bugnot, L. Airoldi, M. Mayer-Pinto & K. A. Dafforn, 2017. Identifying the consequences of ocean sprawl for sedimentary habitats. Journal of Experimental Marine Biology and Ecology 492: 31–48.

    Article  Google Scholar 

  • Hind, K. R., & G. W. Saunders, 2013. A molecular phylogenetic study of the tribe Corallineae (Corallinales, Rhodophyta) with an assessment of genus‐level taxonomic features and descriptions of novel genera. Journal of Phycology, 49(1): 103–114.

  • Ingrosso, G., M. Abbiati, F. Badalamenti, G. Bavestrello, G. Belmonte, R. Cannas & F. Boero, 2018. Mediterranean bioconstructions along the Italian coast. Advances in Marine Biology 79: 61–136.

    Article  PubMed  Google Scholar 

  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds)]. Cambridge University Press. In Press.

  • Izquierdo, D. & J. M. Guerra-García, 2011. Distribution patterns of the peracarid crustaceans associated with the alga Corallina elongata along the intertidal rocky shores of the Iberian Peninsula. Helgoland Marine Research 65(2): 233–243.

    Article  ADS  Google Scholar 

  • Johnson, S. B. & Y. G. Attramadal, 1982. A functional-morphological model of Tanais cavolinii Milne-Edwards (Crustacea, Tanaidacea) adapted to a tubicolous life-strategy. Sarsia 67: 29–42.

    Article  Google Scholar 

  • Johnson, S. B. & Y. G. Attramadal, 1982. Reproductive behaviour and larval development of Tanais cavolinii (Crustacea: Tanaidacea). Marine Biology 71: 11–16.

    Article  Google Scholar 

  • Jones, C. G., J. H. Lawton & M. Shachak, 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78: 1946–1957.

    Article  Google Scholar 

  • Kalokora, O. J., A. S. Buriyo, M. E. Asplund, M. Gullström, M. S. Mtolera & M. Björk, 2020. An experimental assessment of algal calcification as a potential source of atmospheric CO2. PloS ONE 15: e0231971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapsenberg, L. & T. Cyronak, 2019. Ocean acidification refugia in variable environments. Global Change Biology 25(10): 3201–3214.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Kelaher, B. P., 2002. Influence of physical characteristics of coralline turf on associated macrofaunal assemblages. Marine Ecology Progress Series 232: 141–148.

    Article  ADS  Google Scholar 

  • Kleypas, J. A. & C. Langdon, 2006. Coral reefs and changing seawater carbonate chemistry. Coastal and Estuarine Studies: Coral Reefs and Climate Change Science and Management 61: 73–110.

    Article  CAS  Google Scholar 

  • Kohn, A. J. & P. J. Leviten, 1976. Effect of habitat complexity on population density and species richness in tropical intertidal predatory gastropod assemblages. Oecologia 25: 199–210.

    Article  ADS  PubMed  Google Scholar 

  • Kolzenburg, R., F. D’Amore, S. J. McCoy & F. Ragazzola, 2021. Marginal populations show physiological adaptations and resilience to future climatic changes across a North Atlantic distribution. Environmental and Experimental Botany 188: 104522.

    Article  CAS  Google Scholar 

  • Kroeker, K. J., R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh & J. P. Gattuso, 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884–1896.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Lawton, J. H., 1983. Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology 28: 23–39.

    Article  Google Scholar 

  • Lewis, E., D. Wallace, & L. J. Allison, 1998. Program developed for CO2 system calculations (No. ORNL/CDIAC-105). Brookhaven National Lab., Dept. of Applied Science, Upton, NY (United States); Oak Ridge National Lab., Carbon Dioxide Information Analysis Center, TN (United States).

  • Lombardi, C., G. Raiteri, A. Bordone, G. Cerrati, A. Peirano, S. Cocito, D. Pacella, G. Claps, F. Andreoli, L. Gabellieri, M. Adani, M. Nannini, S. Aliani, A. Luchetta, C. Cantoni, A. Marchini, K. Ruggero, D. C. Page, F. Ragazzola, 2018. Will coralline algae reef mitigate climate change effects on associated fauna? A methodological approach to develop “MIMICS" of coralline algae Ellisolandia elongata for climate change studies. ENEA Technical Report 2018/6, pp.38

  • López, E., 2022. Peracarid Assemblages in a Human-Disturbed Location from South-Western Mediterranean Sea: Role of Surface Orientation and Phytal Structure of the Habitat. Thalassas: An International Journal of Marine Sciences, pp. 1–12.

  • MacArthur, R. H. & J. W. MacArthur, 1961. On bird species diversity. Ecology. 42(3): 594–598.

    Article  Google Scholar 

  • Marchini, A., F. Ragazzola, C. Vasapollo, A. Castelli, G. Cerrati, F. Gazzola, C. Jiang, J. Langeneck, M. C. Manauzzi, L. Musco, M. Nannini, J. Zekonyte & C. Lombardi, 2019. Intertidal Mediterranean coralline algae habitat is expecting a shift toward a reduced growth and a simplified associated fauna under climate change. Frontiers in Marine Science. 6: 106.

    Article  Google Scholar 

  • Martin, S., S. Cohu, C. Vignot, G. Zimmerman & J. P. Gattuso, 2013. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated p CO2 and temperature. Ecology and Evolution 3: 676–693.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehrbach, C., C. H. Culberson, J. E. Hawley & R. M. Pytkowicx, 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure 1. Limnology and Oceanography 18(6): 897–907.

    Article  ADS  CAS  Google Scholar 

  • Munguia, P., B. Alenius, 2013. The role of preconditioning in ocean acidification experiments: a test with the intertidal isopod Paradella dianae, Marine and Freshwater Behaviour and Physiology.

  • Navarro-Barranco, C., P. E. Gribben, J. Ledet & A. G. Poore, 2022. Habitat-complexity regulates the intensity of facilitation along an environmental stress gradient. Oikos 2022: e08818.

    Article  ADS  Google Scholar 

  • Pereira, S. G., F. P. Lima, N. C. Queiroz, P. A. Ribeiro & A. M. Santos, 2006. Biogeographic patterns of intertidal macroinvertebrates and their association with macroalgae distribution along the Portuguese coast. Hydrobiologia. 555: 185.

    Article  Google Scholar 

  • R Development Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Ragazzola, F., L. C. Foster, A. U. Form, J. Büscher, T. H. Hansteen & J. Fietzke, 2013. Phenotypic plasticity of coralline algae in a high CO 2 world. Ecology and Evolution 3: 3436–3446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragazzola, F., G. Raiteri, P. Fabbri, M. Scafè, M. Florio, M. Nannini & C. Lombardi, 2017. Structural integrity of Ellisolandia elongata reefs: a mechanical approach to compare tensile strengths in natural and controlled environments. Marine Ecology 38(5): e12455.

    Article  ADS  Google Scholar 

  • Ragazzola, F., A. Marchini, M. Adani, A. Bordone, A. Castelli, G. Cerrati, R. Kolzenburg, J. Langeneck, C. di Marzo, M. Nannini, G. Raiteri, E. Romanelli, M. Santos, C. Vasapollo, C. Pipitone & C. Lombardi, 2021. An intertidal life: combined effects of acidification and winter heatwaves on a coralline alga (Ellisolandia elongata) and its associated invertebrate community. Marine Environmental Research 169: 105342.

    Article  CAS  PubMed  Google Scholar 

  • Ragazzola, F., R. Kolzenburg, M. Adani, A. Bordone, C. Cantoni, G. Cerrati & C. Lombardi, 2021. Carbonate chemistry and temperature dynamics in an alga dominated habitat. Regional Studies in Marine Science 44: 101770.

    Article  Google Scholar 

  • Ravaglioli, C., J. Langeneck, A. Capocchi, A. Castelli, D. Fontanini, P. E. Gribben & F. Bulleri, 2021. Positive cascading effects of epiphytes enhance the persistence of a habitat-forming macroalga and the biodiversity of the associated invertebrate community under increasing stress. Journal of Ecology 109: 1078–1093.

    Article  Google Scholar 

  • Ricart, A. M., B. Gaylord, T. M. Hill, J. D. Sigwart, P. Shukla, M. Ward, A. Ninokawa & E. Sanford, 2021. Seagrass-driven changes in carbonate chemistry enhance oyster shell growth. Oecologia 196: 565–576. https://doi.org/10.1007/s00442-021-04949-0.

    Article  ADS  PubMed  Google Scholar 

  • Rodolfo-Metalpa, R., F. Houlbrèque & É. Tambutté, 2011. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Clim Change 1: 308–312. https://doi.org/10.1038/nclimate1200.

    Article  ADS  CAS  Google Scholar 

  • Schubert, N., L. C. Hofmann, A. C. Almeida Saá, A. C. Moreira, R. G. Arenhart, C. P. Fernandes, D. Beer, P. A. Horta & J. Silva, 2021. Calcification in free-living coralline algae is strongly influenced by morphology: Implications for susceptibility to ocean acidification. Scientific Reports 11(1): 1–14.

    ADS  Google Scholar 

  • Smith, A. M., M. A. Riedi & D. J. Winter, 2013. Temperate reefs in a changing ocean: skeletal carbonate mineralogy of serpulids. Marine Biology 160: 2281–2294.

    Article  CAS  Google Scholar 

  • Tempesti, J., J. Langeneck, F. Maltagliati & A. Castelli, 2020. Macrobenthic fouling assemblages and NIS success in a Mediterranean port: the role of use destination. Marine Pollution Bulletin 150: 110768.

    Article  CAS  PubMed  Google Scholar 

  • Thrush, S. F., J. E. Hewitt, P. K. Dayton, G. Coco, A. M. Lohrer, A. Norkko & M. Chiantore, 2009. Forecasting the limits of resilience: integrating empirical research with theory. Proceedings of the Royal Society B: Biological Sciences 276: 3209–3217.

    Article  PubMed Central  Google Scholar 

  • Tunnicliffe, V., 2009. Survival of mussels in extremely acidic waters on a submarine volcano. Nature Geoscience 2: 344–348.

    Article  ADS  CAS  Google Scholar 

  • Turner, L. M., E. Ricevuto, A. M. Gallucci, M. Lorenti, M. C. Gambi & P. Calosi, 2016. Metabolic responses to high pCO2 conditions at a CO2 vent site in juveniles of a marine isopod species assemblage. Marine Biology 163: 211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Unsworth, R. K., C. J. Collier, G. M. Henderson & L. J. McKenzie, 2012. Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environmental Research Letters 7: 024026.

    Article  ADS  Google Scholar 

  • Vicente, V. S., A. P. Ferreira, P. A. Peres, S. G. Siqueira, F. P. Leite, E. A. Vieira, 2021. Succession of marine fouling community influences the associated mobile fauna via physical complexity increment. Marine and Freshwater Research.

  • Wood, H. L., H. N. Sköld & S. P. Eriksson, 2014. Health and population-dependent effects of ocean acidification on the marine isopod Idotea balthica. Marine Biology 161: 2423–2431.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.R. and C.P. contribution was funded by the Royal Society through the International Travel Awards, UK (IE160247) and C.L. was supported by Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, Italy, with internal funding. C.L. acknowledges A Peirano for field work support, Cooperativa Mitilicoltori Associati for hosting probes and instruments and Scuola di Mare S. Teresa for the logistic support.

Funding

Royal Society, IE160247, Federica Ragazzola

Author information

Authors and Affiliations

Authors

Contributions

FR: Conceptualization, Designing, Project management, MS writing, review, editing and Funding. MN: Sample collection, Mimic building up and transplanting, Environmental and experimental seawater daily monitoring and analyses, Physiological incubations, MS review. GR: Sample preparation for micro-Tomography, Mimic design and printing, Data curation, Environmental monitoring, MS review and editing. AB: Data acquisition, Environmental monitoring, MS revisions. RK: Physiological measurements, experimental seawater daily monitoring and analyses, MS reviewing and editing. ER: Environmental and experimental seawater daily monitoring and analyses and MS review, GC: Analyses on nutrients, Performed all weekly and day–night measurements, MS revisions, Implementations. DP: Micro-Tomography settings design, analyses, MS review. LG: Coordination of Micro-Tomography work, MS review. FA: Micro-Tomography analyses, post-processing work, MS review. GC: Micro-Tomography analyses, data curation, MS review. CV: Data curation, data analyses, MS writing and review. AM: Coordination of taxonomical analyses, Taxonomical identification (crustaceans), MS writing and review. FG: Biological sample processing, Taxonomical identification (crustaceans). Alberto Castelli: Taxonomical identification (polychaetes), MS review. JL: Biological sample processing, Taxonomical identification (polychaetes), MS writing and review. GC: Taxonomical identification (molluscs), MS writing and review. CP: MS review and funding, FM: Taxonomical identification (molluscs), MS review. CL: Conceptualization, Designing, Experimental work coordination, Environmental monitoring, MS writing, review and editing.

Corresponding author

Correspondence to Federica Ragazzola.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Regarding the protection of intellectual property associated with this work, there are no impediments to publication, including the timing of publication, in respect to the regulations of all author’s institutions concerning intellectual property. All the authors substantially contributed to the work, from conceptualization and design, methodologies, MIMICS design and creation, biological and environmental data acquisition, analyses; MS drafting or revising; Agreed final version to be published. The datasets generated during and/or analysed during the current study are available from the last author on request.

Additional information

Handling editor: Trine Bekkby

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 84 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragazzola, F., Nannini, M., Raiteri, G. et al. Early stage ecological communities on artificial algae showed no difference in diversity and abundance under ocean acidification. Hydrobiologia 851, 1939–1955 (2024). https://doi.org/10.1007/s10750-023-05425-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05425-x

Keywords

Navigation