Skip to main content

Advertisement

Log in

Temperate reefs in a changing ocean: skeletal carbonate mineralogy of serpulids

  • Feature Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We present a review of the published data about serpulid skeletal carbonate geochemistry, augmented with new data from the Southern Hemisphere. We know something about skeletal carbonate mineralogy of 15 % of extant species (n = 52); and about half of extant genera (n = 25). Serpulid worm tubes vary in their skeletal mineralogy from entirely aragonitic (about 24 % of species) to entirely high-Mg calcite (40 %) to mixtures of the two. Mg in calcite ranges from 7 to 15 wt% MgCO3, with a mean of 11 wt% MgCO3. Little mineralogical variation within individuals or species can be found in aragonitic specimens, whereas high-Mg calcitic species show somewhat more variability in both calcite and Mg content, and those with mixed mineralogies are highly variable. These three groups correspond broadly with currently accepted clades. Given this strong phylogenetic signal, we analysed the data using phylogenetically independent contrasts, a statistical approach that separates genotypic from phenotypic variability; we found that variations which might be ascribed to environment were generally weak. The mineralogy of serpulid tubes makes them particularly vulnerable to ocean chemistry changes. While some serpulids appear to be able to adjust their tube mineralogy in order to adapt to sea-water chemistry, overall strength and elasticity may be sacrificed when they do. The biodiverse reef habitat provided by serpulids in some temperate regions may be the only complex solid habitat available, and loss or compromise of these temperate reefs will most likely have deleterious flow-on effects on temperate benthic communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alzuria M (1984) Nota sobre la fracción mineral en Dentalium mutabile inaequicostatum (Dautzemberg, 1891) (Mollusca, Scaphopoda). P Dept Zool Barcelona 10:23–25

    Google Scholar 

  • Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implication of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273

    Article  CAS  Google Scholar 

  • Antonioli F, Silenzi S, Frisia S (2001) Tyrrhenian Holocene palaeoclimate trend from spelean serpulids. Quat Sci Rev 20:1661–1670

    Article  Google Scholar 

  • Bastida-Zavala JR, Ten Hove HA (2002) Revision of Hydroides gunnerus, 1768 (Polychaeta: Serpulidae) from the western Atlantic region. Beaufortia 52:103–178

    Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  Google Scholar 

  • Bornhold BD, Milliman JD (1973) Generic and environmental control of carbonate mineralogy in serpulid (Polychaete) tubes. J Geol 81:363–373

    Article  CAS  Google Scholar 

  • Bubel A (1983) A fine structural study of the calcareous opercular plate and associated cells a polychaete annelid. Tissue Cell 15:457–476

    Article  CAS  Google Scholar 

  • Chan VBS, Li C, Lane AC, Wang Y, Lu X et al (2012) CO2-driven ocean acidification alters and weakens integrity of the calcareous tubes produced by the serpulid tubeworm, Hydroides elegans. PLoS ONE 7(8):e42718. doi:10.1371/journal.pone.0042718

    Article  CAS  Google Scholar 

  • Chave KE (1954) Aspects of the biogeochemistry of magnesium. I. Calcareous marine organisms. J Geol 62:266–283

    Article  CAS  Google Scholar 

  • Clarke FW, Wheeler WC (1917) The inorganic constituents of marine invertebrates. United States Geological Survey Professional Paper, 102, Washington, p 56

  • Clarke FW, Wheeler WC (1922) The inorganic constituents of marine invertebrates. United States Geological Survey Professional Paper, 124, Washington, p 62

  • Dodd JR (1963) Paleoecological implications of shell mineralogy in two pelecypod species. J Geol 71:1–11

    Article  Google Scholar 

  • Fauchald K (1977) The polychaete worms: definitions and keys to the orders, families and genera. Natural history museum los angeles county, Science Series, 28, Los Angeles 188

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fornós JJ, Forteza V, Martínez-Taberner A (1997) Modern polychaete reefs in Western Mediterranean lagoons: Ficopomatus enigmaticus (Fauvel) in the Albufera of Menorca, Balearic Islands. Palaeogeogr Palaeoclimatol Palaeoecol 128:175–186

    Article  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Philosophical Transactions of the Royal Society of London. Ser B, Biol Sci 326:119–157

    Article  CAS  Google Scholar 

  • Grave BH (1933) Rate of growth, age at sexual maturity, and duration of life of certain sessile organisms, at Woods Hole, Massachusetts. Biol Bull 65:375–386

    Article  Google Scholar 

  • Gray BE, Smith AM (2004) Mineralogical variation in shells of the Blackfoot Abalone Haliotis iris (Mollusca: Gastropoda: Haliotidae), in southern New Zealand. Pac Sci 58:47–64

    Article  CAS  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Google Scholar 

  • Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508

    Article  CAS  Google Scholar 

  • Hedley RH (1958) Tube formation by Pomatoceros triqueter (Polychaeta). J Mar Biol Assoc U.K. 37:315–322

    Article  Google Scholar 

  • Hua H, Chen Z, Yuan X, Zhang L, Xiao S (2005) Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology 33:277–280

    Article  Google Scholar 

  • Hughes DJ, Poloczanska ES, Dodd J (2008) Survivorship and tube growth of reef-building Serpula vermicularis (Polychaeta: Serpulidae) in two Scottish sea lochs. Aquat Conserv Mar Freshw Ecosyst 18:117–129

    Article  Google Scholar 

  • Ives AR, Zhu J (2006) Statistics for correlated data: phylogenies, space, and time. Ecol Appl 16:20–32

    Article  Google Scholar 

  • Klemm J (2007) Growth and calcification of Galeolaria hystrix (Polychaeta: Serpulidae). Unpublished Research Report, Depart Mar Sci 40 pp

    Google Scholar 

  • Kupriyanova EK, Nishi E (2010) Serpulidae (Annelida, Polychaeta) from Patton-Murray Seamount, Gulf of Alaska, North Pacific Ocean. Zootaxa 2665:51–68

    Google Scholar 

  • Kupriyanova EK, Rouse GW (2008) Yet another example of paraphyly in Annelida: molecular evidence that Sabellidae contains Serpulidae. Mol Phylogenet Evol 46:1174–1181

    Article  CAS  Google Scholar 

  • Kupriyanova EK, Nishi E, ten Hove HA, Rzhavsky AV (2001) Life-history patterns in serpulimorph polychaetes: ecological and evolutionary perspectives. Oceanogr Mar Biol Annu Rev 39:1–101

    Google Scholar 

  • Kupriyanova EK, Macdonald TA, Rouse GW (2006) Phylogenetic relationships within Serpulidae (Sabellida, Annelida) inferred from molecular and morphological data. Zoolo Scr 35:421–439

    Article  Google Scholar 

  • Lane AC, Mukherjee J, Chan VBS, Thiyagarajan V (2012) Decreased pH does not alter metamorphosis but compromises juvenile calcification of the tube worm Hydroides elegans. Mar Biol. doi:10.1007/s00227-012-2056-9

    Google Scholar 

  • Lewis JA, Watson C, Ten Hove HA (2006) Establishment of the Caribbean serpulid tubeworm Hydroides sanctaecrucis Krøyer [in]Mörch, 1863, in northern Australia. Biol Invasions 8:665–671

    Article  Google Scholar 

  • Lowenstam HA (1954) Environmental relations of modification compositions of certain carbonate secreting marine invertebrates. Proc Natl Acad Sci U S A 40:39–48

    Article  CAS  Google Scholar 

  • Lowenstam HA (1964) Coexisting calcites and aragonites from skeletal carbonates of marine organisms and their strontium and magnesium contents. In: Miyake Y, Koyama T (eds) Recent researches in the fields of hydrosphere, atmosphere and nuclear geochemistry. Maruzen, Tokyo, pp 373–404

    Google Scholar 

  • Lowenstam HA, Weiner S (1989) On Biomineralization. Oxford University Press, New York, p324

    Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Neff JM (1969) Mineral regeneration by serpulid polychaete worms. Biol Bull 136:76–90

    Article  CAS  Google Scholar 

  • Neff JM (1971) Ultrastructural studies of the secretion of calcium carbonate by the serpulid polychaete worm, Pomatoceros caeruleus. Zeitschrift für Zellforschung 120:160–186

    Article  CAS  Google Scholar 

  • O’Hara RB (2009) How to make models add up-a primer on GLMMs. Ann Zool Fenn 46:124–137

    Article  Google Scholar 

  • Palmer CP (2001) Dentalium giganteum Phillips: a serpulid worm tube. Proc Yorks Geol Soc 53:253–255

    Article  Google Scholar 

  • Pernet B (2001) Escape hatches for the clonal offspring of serpulid polychaetes. Biol Bull 200:107–117

    Article  CAS  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R news 6:7–11

    Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. Vienna, Austria. Available at: http://www.R-project.org

  • Reish DJ, Mason AZ (2003) Radiocarbon dating and metal analyses of ‘fossil’ and living tubes of Protula (Annelida: Polychaeta). Hydrobiologia 496:371–383

    Article  CAS  Google Scholar 

  • Riedi MA (2012) Carbonate production by two New Zealand serpulids: skeletal allometry, mineralogy, growth and calcification of Galeolaria hystrix and Spirobranchus cariniferus (Polychaeta: Serpulidae), southern New Zealand. MSc Thesis, Department of Marine Science, University of Otago, Dunedin, New Zealand, p 174

  • Ries JB (2011) Skeletal mineralogy in a high-CO2 world. J Exp Mar Biol Ecol 403:54–64

    Article  CAS  Google Scholar 

  • Rullier F (1946) Croissance de tube de Mercierella enigmatica Fauvel. Bulletin du Laboratoire maritime de Dinard, 27:11–15

    CAS  Google Scholar 

  • Sanfilippo R (2009) Systematics and life habit in Serpula israelitica Amoureux, 1977 (Polychaeta Serpulidae) from the Mediterranean with remarks on other soft-bottom serpulids. J Nat Hist 43:2009–2025

    Article  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization: cell biology and mineral deposition. Academic Press, San Diego, p337

    Google Scholar 

  • Smith SV, Haderlie EC (1969) Growth and longevity of some calcareous fouling organisms, Monterey Bay, California. Pac Sci 23:447–451

    Google Scholar 

  • Smith AM, McGourty CR, Kregting L, Elliot A (2005) Subtidal Galeolaria hystrix (Polychaeta: Serpulidae) reefs in Paterson Inlet, Stewart Island, New Zealand. NZ J Mar Freshw Res 39:1297–1304

    Article  Google Scholar 

  • Smith AM, Key MM Jr, Gordon DP (2006) Skeletal mineralogy of bryozoans: taxonomic and temporal patterns. Earth Sci Rev 78:287–306

    Article  Google Scholar 

  • Smith AM, Henderson ZE, Kennedy M, King TM, Spencer HG (2012) Reef-formation versus solitariness in two New Zealand serpulids does not involve cryptic species. Aquat Biol 16:97–103

    Article  Google Scholar 

  • Smithson M, Verkuilen J (2006). Fuzzy Set Theory: Applications in the Social Sciences 147, Thousand Oaks, CA: Sage, p 97

    Google Scholar 

  • Stanley SM (2006) Influence of seawater chemistry on biomineralization throughout phanerozoic time: paleontological and experimental evidence. Palaeogeogr Palaeoclimatol Palaeoecol 232:214–236

    Article  Google Scholar 

  • Stewart RJ, Weaver JC, Morse DE, Waite JH (2004) The tube cement of Phragmatopoma californica: a solid foam. J Exp Biol 207:4727–4734

    Article  CAS  Google Scholar 

  • Stuck E (2011) Indirect measurement of growth and calcification in Protula bispiralis (Polychaete: Serpulidae) from Paterson Inlet, Stewart Island. Unpublished Research Report, Department of Marine Science, University of Otago, Dunedin, New Zealand, New Zealand 41 pp

    Google Scholar 

  • Tanur AE, Gunari N, Sullan RMA, Kavanagh CJ, Walker GC (2010) Insights into the composition, morphology, and formation of the calcareous shell of the serpulid Hydroides dianthus. J Struct Biol 169:145–160

    Article  CAS  Google Scholar 

  • Taylor PD, Vinn O, Kudryavtsev A, Schopf JW (2010) Raman spectroscopic study of the mineral composition of cirratulid tubes (Annelida, Polychaeta). J Struct Biol 171:402–405

    Article  CAS  Google Scholar 

  • ten Hove HA (1979) Different causes of mass occurence in serpulids. In: Larwood, G. and Rosen, B. R., (eds) Biology and systematic of colonial organisms, Academic Press London. Systematics Association Special Volume 11:281–298

    Google Scholar 

  • ten Hove HA, Kupriyanova EK (2009) Taxonomy of Serpulidae (Annelida, Polychaeta): the state of affairs. Zootaxa 2036:1–126

    Google Scholar 

  • ten Hove HA, van den Hurk P (1993) A review of recent and fossil serpulid ‘reefs’; actuopalaeontology and the ‘Upper Malm’ serpulid limestones in NW Germany. Geol Mijnbouw 72:23–67

    Google Scholar 

  • Vinn O, Kupriyanova EK (2011) Evolution of a dense outer protective tube layer in serpulids (Polychaeta, Annelida). Carnets de Géologie 2011(05):137–147

    Google Scholar 

  • Vinn O, Mutvei H (2009) Calcareous tubeworms of the Phanerozoic. Estonian J Earth Sci 58:286–296

    Article  Google Scholar 

  • Vinn O, Ten Hove HA (2011) Microstructure and formation of the calcareous operculum in Pyrgopolon ctenactis and Spirobranchus giganteus (Annelida, Serpulidae). Zoomorphology 130:181–188

    Article  Google Scholar 

  • Vinn O, ten Hove HA, Mutvei H (2008a) On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta). Palaeontology 51:295–301

    Article  Google Scholar 

  • Vinn O, Mutvei H, ten Hove HA, Kirsimäe K (2008b) Unique Mg-calcite skeletal ultrastrcutre in the tube of the serpulid polychaete Ditrupa. Neues Jahrb Geol Paläont Abh 248:79–89

    Article  Google Scholar 

  • Vinn O, ten Hove HA, Mutvei H, Kirsimäe K (2008c) Ultrastructure and mineral composition of serpulid tubes (Polychaeta, Annelida). Zool J Linn Soc 154:633–650

    Article  Google Scholar 

  • Vinn O, Kirsimäe K, ten Hove HA (2009) Tube ultrastructure of Pomatoceros americanus (Polychaeta, Serpulidae): implications for tube formation of serpulids. Estonian J Earth Sci 58:148–152

    Article  Google Scholar 

  • Vinogradov AP (1953) The elementary chemical composition of marine organisms. II, Yale University, New Haven, Sears Foundation for Marine Research Memoir, p 647

    Google Scholar 

  • Vinther J, Van Roy P, Briggs DEG (2008) Machaeridians are Palaeozoic armoured annelids. Nature 451:185–188

    Article  CAS  Google Scholar 

  • Vovelle J, Grasset M, Truchet M (1991) Sites of biomineralization in the polychaete Pomatoceros triqueter (Serpulidae) with comments on some other species. In: Petersen ME and Kirkegaard JB (eds) Systematics, Biology and Morphology of World Polychaeta. Proceedings of the 2nd International Polychaete Conference Copenhagen 1986. Ophelia Int J Mar Biol Suppl 5:661–667

    Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Matthew Baird, Dr Katrin Berkenbusch, Christine Davis, Rory Kyle, Gearoid O’Sullivan, Danilo Pecorino, Anja Studer, and David Wilson for assistance in the field. We acknowledge the work of Julie Klemm, Esther Stuck, and Christine Davis, as well as support from Dr Damian Walls, with X-ray diffractometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail M. Smith.

Additional information

Communicated by R. Hill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.M., Riedi, M.A. & Winter, D.J. Temperate reefs in a changing ocean: skeletal carbonate mineralogy of serpulids. Mar Biol 160, 2281–2294 (2013). https://doi.org/10.1007/s00227-013-2210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2210-z

Keywords

Navigation