Skip to main content
Log in

Assessment of spatio-temporal variations of macroalgal canopies and fish schools before and after coastal desertification using acoustic methods

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Macroalgal canopies, which provide nutrients and habitats for many invertebrates and fishes in coastal waters, are disappearing worldwide. The simultaneous assessment of changes in macroalgae and fish distribution before and after coastal desertification, including deeper coastal waters where beyond macroalgae growth need attention. Therefore, we investigated their spatial distribution in the coastal waters off southwestern Japan in late autumn and winter using the acoustic method combined with visual observation. The number of fish schools was higher in late autumn than in winter, while they had similar acoustic backscattering strength (Sv) and school size, tended to be distributed in shallower waters. The number was lower after the macroalgae disappeared in both seasons, while the average Sv was higher, and the size was larger. They were distributed in similar water depths during the winter season. Fewer fish schools and higher Sv were observed in deeper waters after the macroalgae disappeared. We concluded that more fishes moved to shallower waters in the autumn than in the winter because of higher water temperatures. Macroalgae benefited small juvenile fishes in both shallow and deep coastal waters. Further studies on the distribution of specific species are expected for the assessment and restoration of the macroalgal ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  • Anderson, J. T., D. V. Holliday, R. Kloser, D. G. Reid & Y. Simard, 2008. Acoustic seabed classification: current practice and future directions. ICES Journal of Marine Science 65: 1048–1011.

    Article  Google Scholar 

  • Boswell, K. M., M. P. Wilson & C. A. Wilson, 2007. Hydroacoustics as a tool for assessing fish biomass and size distribution associated with discrete shallow water estuarine habitats in Louisiana. Estuaries and Coasts 30: 607–617.

    Article  Google Scholar 

  • Brown, C. J., S. J. Smith, P. Lawton & J. T. Anderson, 2011. Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuarine, Coastal and Shelf Science 92: 502–520.

    Article  ADS  Google Scholar 

  • Charef, A., S. Ohshimo, I. Aoki & N. A. Absi, 2010. Classification of fish schools based on evaluation of acoustic descriptor characteristics. Fisheries Science 76: 1–11.

    Article  CAS  Google Scholar 

  • Cheminée, A., J. Pastor, O. Bianchimani, P. Thiriet, E. Sala, J. M. Cottalorda, J. M. Dominici, P. Lejeune & P. Francour, 2017. Juvenile fish assemblages in temperate rocky reefs are shaped by the presence of macroalgal canopy and its three-dimensional structure. Science Reports 7: 1–11.

    Google Scholar 

  • Demer, D., L. Berger, M. Bernasconi, E. Bethke, K. Boswell, D. Chu & R. Domokos, 2015. Calibration of acoustic instruments. Cooperative Research Reports No. 326, 133 pp.

  • Dotsu, Y., 1977. Fishes of the Island of Iki. In Natural history of the Island of Iki. Nagasaki Biological Society, Eds. Showado Inc: Nagasaki, Japan, 1977. pp.283–310.

  • Fujita, D., 2010. Current status and problems of isoyake in Japan. Bulletin of Fisheries Research Agency 32: 33–42.

    Google Scholar 

  • Fukuoka Regional Headquarters, Japan Meteorological Agency (FRH, JMA), 2022. URL https://www.data.jma.go.jp/fukuoka/kaiyo/kaikyo/mean_sst/index_fk.html

  • Fulton, C. J., C. Berkström, S. K. Wilson, R. A. Abesamis, M. Bradley, C. Åkerlund, L. T. Barrett, A. A. Bucol & P. Tinkler, 2020. Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish and Fisheries 21: 700–717.

    Article  Google Scholar 

  • Gianni, F., F. Bartolini, A. Pey, M. Laurent, G. M. Martins, L. Airoldi & L. Mangialajo, 2017. Threats to large brown algal forests in temperate seas: the overlooked role of native herbivorous Fish. Science Reports 7: 6012.

    Article  ADS  Google Scholar 

  • Godlewska, M., K. Izydorczyk, Z. Kaczkowski, A. Jóźwik, B. Długoszewski, S. Ye, Y. Lian & J. Guillard, 2015. Do fish and blue-green algae blooms coexist in space and time? Fisheries Research 173: 93–100.

    Article  Google Scholar 

  • Hagan, S. M. & K. W. Able, 2003. Seasonal changes of the pelagic fish assemblage in a temperate estuary. Estuarine, Coastal and Shelf Science 56: 15–29.

    Article  ADS  Google Scholar 

  • Hinz, H., O. Reñones, A. Gouraguine, A. F. Johnson & J. Moranta, 2019. Fish nursery value of algae habitats in temperate coastal reefs. PeerJ 7: e6797. https://doi.org/10.7717/peerj.6797.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horne, J. K., 2000. Acoustic approaches to remote species identification: a review. Fish Oceanography 9: 356–371.

    Article  Google Scholar 

  • Japan Meteorological Agency (JMA), 2022. URL https://www.data.jma.go.jp/gmd/kaiyou/data/shindan/a_1/japan_warm/japan_warm.html

  • Jueterbock, A., L. Tyberghein, H. Verbruggen, J. A. Coyer, J. L. Olsen & G. Hoarau, 2013. Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecology and Evolution 3: 1356–1373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadota, T., S. Kiyomoto, H. Fukuda & T. Yoshimura, 2017a. Temporal patterns of aggregation formation around wave-dissipating blocks in the grey sea chub Kyphosus bigibbus. Nippon Suisan Gakkai Shi 83: 74–76 ((in Japanese)).

    Article  Google Scholar 

  • Kadota, T., S. Kiyomoto, M. Nakagawa, K. Yatsuya & T. Yoshimura, 2017b. Fish assemblage associated with a spring macroalgal bed off western Nishi-Sonogi Peninsula, Nagasaki, Japan. Japanese Journal of Ichthyology 64: 145–156 (in Japanese with English abstract).

    Google Scholar 

  • Kamimura, K. & J. Shoji, 2009. Seasonal changes in the fish assemblage in a mixed vegetation area of seagrass and macroalgae in the Central Seto Inland Sea. Aquaculture Science 57: 233–241.

    Google Scholar 

  • Kang, M., T. Nakamura & A. Hamano, 2011. A methodology for acoustic and geospatial analysis of diverse artificial-reef datasets. ICES Journal of Marine Science 68: 2210–2221.

    Article  Google Scholar 

  • Kiriyama, T., A. Fujii, T. Yoshimura, S. Kiyomoto & T. Yotsui, 1999. Leaf-lost phenomenon observed on three Laminariaceous species in coastal waters around Nagasaki Prefecture in autumn 1998. Suisanzoshoku 47: 319–323 (in Japanese with English abstract).

    Google Scholar 

  • Kiyomoto, S., T. Kadota, T. Taneda & T. Yoshimura, 2018. Transition of seaweed bed along the western coast of Kyushu. Aquabiology 40: 210–219 (in Japanese with English abstract).

    Google Scholar 

  • Kiyomoto, S., H. Yamanaka, T. Yoshimura, K. Yatsuya, H. Shao, T. Kadota & A. Tamaki, 2021. Long-term change and disapperance of Lessoniaceae marine forests off Waka, Ikishima Island, northernwestern Kyushu, Japan. Nippon Suisan Gakkai Shi 87: 642–651 (in Japanese with English abstract).

    Article  Google Scholar 

  • Levin, P. S. & M. E. Hay, 1996. Responses of temperate reef fishes to alterations in algal structure and species composition. Marine Ecology Progress Series 134: 37–47.

    Article  ADS  Google Scholar 

  • Mann, K. H., 1973. Seaweeds: Their productivity and strategy for growth. Science 182: 975–981.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mann, K. H., 1982. Kelp, sea urchins and predators: a review of strong interactions in rocky ecosystems of eastern Canada, 1970–1980. Netherlands Journal of Sea Research 16: 414–423.

    Article  ADS  Google Scholar 

  • Masuda, R., 2008. Seasonal and interannual variation of subtidal fish assemblages in Wakasa Bay with reference to the warming trend in the Sea of Japan. Environmental Biology of Fishes 82: 387–399.

    Article  Google Scholar 

  • Medwin, H. & C. S. Clay, 1998. Fundamentals of acoustical oceanography, Academic Press, Boston:, 142–143.

    Google Scholar 

  • Mehler, K., L. E. Burlakova, A. Y. Karatayev, Z. Biesinger, A. Valle-Levinson, C. Castiglione & D. Gorsky, 2018. Sonar technology and underwater imagery analysis can enhance invasive Dreissena distribution assessment in large rivers. Hydrobiologia 810: 119–131.

    Article  CAS  Google Scholar 

  • Minami, K., H. Yasuma, N. Tojo, S. Fukui, Y. Ito, T. Nobetsu & K. Miyashita, 2010. Estimation of kelp forest, Laminaria spp., distributions in coastal waters of the Shiretoko Peninsula, Hokkaido, Japan, using echosounder and geostatistical analysis. Fisheries Science 76: 729–736.

    Article  CAS  Google Scholar 

  • Murase, N., 2001. Ecological study of Sargassum macrocarpum C. Agardh (Fucales, Phaeophyta). Journal of National Fisheries University 49: 131–212.

    Google Scholar 

  • Murase, N., 2010. The influence of high water temperature. In Fujita, D., N. Murase & H. Kuwahara (eds), Monitoring and maintenance of seaweed beds Tokyo, Japan, Seizando-shoten: 33–38.

    Google Scholar 

  • Nakamura, Y., 2018. Climate-induced changes in seaweeds and their associated fish fauna. In Climate change impact on macroalgal bed ecosystem. Aquabiology 40: 220–225 ((in Japanese)).

    Google Scholar 

  • Ona, E. & R. B. Mitson, 1996. Acoustic sampling and signal processing near the seabed: the deadzone revisited. ICES J. Mar. Sci. 53: 677–690.

    Article  Google Scholar 

  • Paul, M., A. Lefebvre, E. Manca & C. L. Amos, 2011. An acoustic method for the remote measurement of seagrass metrics. Estuarine, Coastal and Shelf Science 93: 68–79.

    Article  ADS  Google Scholar 

  • Pehlke, C. & I. Bartsch, 2008. Changes in depth distribution and biomass of sublittoral seaweeds at Helgoland (North Sea) between 1970 and 2005. Climate Research 37: 135–147.

    Article  ADS  Google Scholar 

  • R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Sabol, B. M., R. E. Melton, R. Chamberlain, P. Doering & K. Haunert, 2002. Evaluation of a digital echo sounder system for detection of submersed aquatic vegetation. Estuaries and Coasts 25: 133–141.

    Article  Google Scholar 

  • Saburomaru, T. & H. Tsukahara, 1984. The life story of Girella punctata gray on the northern coast of Fukuoka. Science Bulletin of the Faculty of Agriculture, Kyushu University 39: 35–48.

    Google Scholar 

  • Serisawa, Y., Z. Imoto, T. Ishikawa & M. Ohno, 2004. Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fisheries Science 70: 189–191.

    Article  CAS  Google Scholar 

  • Shao, H., K. Minami, H. Shirakawa, T. Maeda, T. Ohmura, Y. Fujikawa, N. Yotsukura, M. Nakaoka & K. Miyashita, 2017. Verification of echosounder measurements of thickness and spatial distribution of kelp forests. Journal of Marine Science and Technology-Taiwan 25: 343–351.

    Google Scholar 

  • Shao, H., S. Kiyomoto, Y. Kawauchi, T. Kadota, M. Nakagawa, T. Yoshimura, H. Yamada, T. Acker & B. Moore, 2021. Classification of various algae canopy, algae turf, and barren seafloor types using a scientific echosounder and machine learning analysis. Estuarine, Coastal and Shelf Science 255: 107362.

    Article  Google Scholar 

  • Simmonds, J. & D. MacLennan, 2005. Fisheries acoustics (Theory and practice), 2nd ed. Blackwell, Oxford, UK:

    Book  Google Scholar 

  • Soldal, A. V., I. Svellingen, T. Jorgensen & S. Lokkeborg, 2002. Rigs-to reefs in the North Sea, hydroacoustic quantification of fish in the vicinity of a “semi-old” platform. ICES Journal of Marine Science 59: 281–287.

    Article  Google Scholar 

  • Sonoki, S., H. Shao, Y. Morita, K. Minami, J. Shoji, M. Hori & K. Miyashita, 2016. Using acoustics to determine eelgrass bed distribution and to assess the seasonal variation of ecosystem service. PLoS One 11: e0150890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steneck, R. S., M. H. Graham, B. J. Bourque, D. Corbett, J. M. Erlandson, J. A. Estes & M. J. Tegner, 2002. Kelp forest ecosystems: biodiversity, stability, resilience and their future. Environmental Conservation 29: 436–459.

    Article  Google Scholar 

  • Tano, S. A., M. Eggertsen, S. A. Wikstrom, C. Berkstrom, A. S. Buriyo & C. Halling, 2017. Tropical seaweed beds as important habitats for juvenile fish. Marine and Freshwater Research 68: 1921–1934.

    Article  Google Scholar 

  • Tanoue, H., A. Hamano, T. Komatsu & E. Biosonier, 2008. Assessing bottom structure influence on fish abundance in a marine hill by using conjointly acoustic survey and geographic information system. Fisheries Science 74: 469–478.

    Article  CAS  Google Scholar 

  • Terazono, Y., Y. Nakamura, Z. Imoto & M. Hiraoka, 2012. Fish response to expanding tropical Sargassum beds on the temperate coasts of Japan. Marine Ecology Progress Series 464: 209–220.

    Article  ADS  Google Scholar 

  • Vergés, A., C. Doropoulos, H. A. Malcolm, M. Skye, M. Garcia-Pizá, E. M. Marzinelli & P. D. Steinberg, 2016. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proceedings of the National Academy of Sciences 113: 13791–13796.

    Article  ADS  Google Scholar 

  • Watanabe, J. M. & C. Harrold, 1991. Destructive grazing by sea urchins Strongylocentrotus spp. in a central California kelp forest: potential roles of recruitment, depth, and predation. Marine Ecology Progress Series 71: 125–141.

    Article  ADS  Google Scholar 

  • Yamaguchi, A. & K., Inoue, K. Furumitsu, T. Yoshimura, T. Koido & H. Nakata, 2006. Behavior and migration of rabbitfish Siganus fuscescens and grey seachub Kyphosus bigibbus off Nomozaki [Japan], Kyushu, tracked by biotelemetry method. Nippon Suisan Gakkai Shi 72: 1046–1056 (in Japanese with English abstract).

    Article  Google Scholar 

  • Yatsuya, K., T. Kiriyama, S. Kiyomoto, T. Taneda & T. Yoshimura, 2014a. On the deterioration process of Ecklonia and Eisenia beds observed in 2013 at Gounoura, Iki Island, Nagasaki Prefecture, Japan. -Initiation of the bed degradation due to high water temperature in summer and subsequent cascading effect by the grazing of herbivorous fish in autumn-. Algal Resources 7: 79–94 (in Japanese with English abstract).

    Google Scholar 

  • Yatsuya, K., S. Kiyomoto & T. Yoshimura, 2014b. Seasonal changes in biomass and net production of Ecklonia kurome Okamura community off Gounoura, Iki Island, northern Kyushu, Japan. Algal Resources 7: 67–77 (in Japanese with English abstract).

    Google Scholar 

  • Yendo, K., 1903. Seaweed isoyake survey report. Fisheries Survey Report 12: 1–33 ((In Japanese)).

    Google Scholar 

  • Zenonea, A. M., D. E. Burkepile & K. M. Boswell, 2017. A comparison of diver vs. acoustic methodologies for surveying fishes in a shallow water coral reef ecosystem. Fisheries Research 189: 62–66.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Research Grant of the Hirose Foundation and the Research and Development Infrastructure Enhancement grant of the Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency (FRA). We thank our colleagues from Japan FRA, especially Dr. Hideaki Yamada, who provided their insights and expertise, which greatly enabled the research. We thank the Gonoura Fishery Cooperative and the Farming Center of Iki City, Nagasaki, Japan, for their assistance in field surveys. We also thank the anonymous reviewers for their helpful suggestions.

Funding

This study was funded by the Research Grant of Hirose Foundation and Research Grant of Japan Fisheries Research and Education Agency (FRA).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.S.; methodology, H.S.; software, H.S.; validation, H.S. and S.K.; formal analysis, H.S.; investigation, H.S., S.K., T.K. M.N. and H.Y.; resources, H.S., S.K., T.K. and H.Y.; data curation, H.S.; writing—original draft preparation, H.S.; writing—review and editing, S.K., Y.K., T.K., K.M. and K.M.; visualization, H.S.; supervision, S.K., K.M. and K.M.; project administration, S.K., M.N and H.S.; funding acquisition, H.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to H. Shao.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Handling editor: Jonne Kotta

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, H., Kiyomoto, S., Kadota, T. et al. Assessment of spatio-temporal variations of macroalgal canopies and fish schools before and after coastal desertification using acoustic methods. Hydrobiologia 851, 1891–1906 (2024). https://doi.org/10.1007/s10750-023-05422-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05422-0

Keywords

Navigation