Skip to main content
Log in

Sonar technology and underwater imagery analysis can enhance invasive Dreissena distribution assessment in large rivers

  • FRESHWATER BIVALVES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dreissena spp. are aggressive invaders of many waterbodies worldwide. However, the accurate assessment of their spatial distribution in large rivers is difficult using traditional sampling techniques such as Ponar grabs or SCUBA diving. The aim of this study was to use sonar technologies and underwater imagery (videos, still images) in tandem with traditional Ponar sampling to predict Dreissena presence, and produce a habitat suitability map to enhance our understanding of its spatial distribution in the lower Niagara River, New York, USA. Geo-referenced maps of environmental variables were generated using three sonar technologies: side scan sonar, multibeam sonar, and an Acoustic Doppler Current Profiler. Dreissena presence/absence was determined at 102 sites along a 10 km stretch using Ponar grabs supplemented by an underwater imagery. Substrate and near-bottom flow were the most important variables affecting Dreissena distribution. Habitats with coarse substrate and near-bottom flow of 0.6–0.80 m/s were predicted to be most often occupied. The habitat suitability model indicates that almost 90% of the stream bed in the river can be considered highly- or moderately suitable habitat. Our results demonstrate that supplementing traditional sampling with sonar technologies and underwater imagery can greatly improve Dreissena distribution assessment at the ecosystem scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bartsch, M. R., L. A. Bartsch & S. Gutreuter, 2005. Strong effects of predation by fishes on an invasive macroinvertebrate in a large floodplain river. Journal of North American Benthological Society 24: 168–177.

    Article  Google Scholar 

  • Baumgaertner, D., M. Mörtl & K.-O. Rothhaupt, 2008. Effects of water-depth and water-level fluctuations on the macroinvertebrate community structure in the littoral zone of Lake Constance. Hydrobiologia 613: 97–107.

    Article  Google Scholar 

  • Berkman, P. A., M. A. Haltuch, E. Tichich, D. W. Garton, G. W. Kennedy, J. E. Gannon, S. D. Mackey, J. A. Fuller & D. L. Liebenthal, 1998. Zebra mussels invade Lake Erie muds. Nature 393: 27–28.

    Article  CAS  Google Scholar 

  • Bingham, C. R., Mathis, D.B., L. G. Sanders & E. McLemore, 1982. Grab samplers for benthic macroinvertebrates in the lower Mississippi River Environmental and Water Quality Operational Studies. Final Report. Miscellaneous Paper E-82-3.

  • Burlakova, L. E., A. Y. Karatayev & V. A. Karatayev, 2012. Invasive mussels induce community changes by increasing habitat complexity. Hydrobiologia 685: 121–134.

    Article  Google Scholar 

  • Carlton, J. T., 2008. The zebra mussel Dreissena polymorpha found in North America in 1986 and 1987. Journal of Great Lakes Research 34: 770–773.

    Article  Google Scholar 

  • Chapman, S., 2015. Comparison of side scan sonar substrate classification methods to assess accuracy. Master thesis. State University of New York. University of Buffalo.

  • Coakley, T. P., G. L. Brown, S. E. Ioannou & M. N. Charlton, 1997. Colonization patterns and densities of Zebra Mussel Dreissena in muddy offshore sediments of western Lake Erie, Canada. Water Air Soil Pollution 99: 623–632.

    CAS  Google Scholar 

  • Cochrane, G. R. & K. D. Lafferty, 2002. Use of acoustic classification of sidescan sonar data for mapping benthic habitats in the Northern Channel Islands, California. Continetal Shelf Research 22: 683–690.

    Article  Google Scholar 

  • Collas, F. P. L., K. R. Koopman, A. J. Hendriks, G. van der Velde, L. N. H. Verbrugge & R. S. E. W. Leuven, 2014. Effects of desiccation on native and non-native molluscs in rivers. Freshwater Biology 59: 41–55.

    Article  Google Scholar 

  • Connelly, N. A., C. R. O’Neill Jr., B. A. Knuth & T. L. Brown, 2007. Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities. Environmental Management 40: 105–112.

    Article  PubMed  Google Scholar 

  • Fang, T. & L. Piegl, 1993. Delaunay triangulation using a uniform grid. IEEE Computer Graphics and Applications 13: 36–47.

    Article  Google Scholar 

  • Gonzalez, M. & G. Burkart, 2004. Effects of food type, habitat and fish predation on the relative abundance of two amphipod species, Gammarus fasciatus and Echinogammarus ischnus. Journal of Great Lakes Research 30: 100–113.

    Article  Google Scholar 

  • Haltuch, M. A. & P. A. Berkman, 2000. Geographic information system (GIS) analysis of ecosystems invasion: Exotic mussels in Lake Erie. Limnology and Oceanography 45: 1778–1787.

    Article  Google Scholar 

  • Hastie, L. C., P. J. Boon & M. R. Young, 2000. Physical microhabitat requirements of freshwater pearl mussels, Margaritifera margaritifera (L.). Hydrobiologia 429: 59–71.

    Article  Google Scholar 

  • Higgins, S. N. & M. J. Vander Zanden, 2010. What a difference a species makes: a meta–analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs 80: 179–196.

    Article  Google Scholar 

  • Horvath, T. G. & L. Crane, 2010. Hydrodynamic forces affect larval zebra mussel (Dreissena polymorpha) mortality in a laboratory setting. Aquatic Invasions 5: 379–385.

    Article  Google Scholar 

  • Horvath, T. G. & G. A. Lamberti, 1999. Mortality of zebra mussel, Dreissena polymorpha, veligers during downstream transport. Freshwater Biology 42: 69–76.

    Article  Google Scholar 

  • Howell, E. T., C. H. Marvin, R. W. Bilyea, P. B. Kauss & K. Somers, 1996. Changes in environmental conditions during Dreissena colonialization of a monitoring station in Eastern Lake Erie. Journal of Great Lakes Research 22: 744–756.

    Article  CAS  Google Scholar 

  • Johnson, P. D. & R. F. McMahon, 1998. Effects of temperature and chronic hypoxia on survivorship of the zebra mussel (Dreissena polymorpha) and Asian clam (Corbicula fluminea). Canadian Journal of Fisheries and Aquatic Sciences 55: 1564–1572.

    Article  Google Scholar 

  • Jones, L. A. & A. Ricciardi, 2005. Influence of physicochemical factors on the distribution and biomass of invasive mussels (Dreissena polymorpha and Dreissena bugensis) in the St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences 62: 1953–1962.

    Article  CAS  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 1998. Physical factors that limit the distribution and abundance of Dreissena polymorpha (pall.). Journal of Shellfish Research 17: 1219–1235.

    Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2002. Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In Leppakoski, E., S. Gollach & S. Olenin (eds), Invasive Aquatic Species of Europe: Distribution, Impacts and Management. Kluwer Academic Publishers, Dordreicht.

    Google Scholar 

  • Karatayev, A. Y., D. K. Padilla, D. Minchin, D. Boltovskoy & L. E. Burlakova, 2007. Changes in global economies and trade: the potential spread of exotic freshwater bivalves. Biological Invasions 9: 161–180.

    Article  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova, S. E. Mastitsky, D. K. Padilla & E. L. Mills, 2011. Contrasting rates of spread of two congeners, Dreissena polymorpha and Dreissena rostriformis bugensis, at different spatial scales. Journal of Shellfish Research 30: 923–931.

    Article  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2015a. Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia. 746: 97–112.

    Article  CAS  Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova, S. E. Mastitsky & D. K. Padilla, 2015b. Predicting the spread of aquatic invaders: insight from 200 years of invasion by zebra mussels. Ecological Applications 25: 430–440.

    Article  PubMed  Google Scholar 

  • Kenney, A. J., I. Cato, M. Desperez, G. Fader, R. T. F. Schuettenhelm & J. Side, 2003. An overview of seabed-mapping technologies in the context of marine habitat classification. ICES Journal of Marine Science 60: 411–448.

    Article  Google Scholar 

  • Kobak, J., L. Jermacz & D. Plachocki, 2014. Effectiveness of zebra mussels to act as shelters from fish predators differs between native and invasive amphipod prey. Aquatic Ecology 48: 397–408.

    Article  Google Scholar 

  • Leuven, R. S. E. W., G. van der Velde, I. Baijens, J. Snijders, C. van der Zwart, H. J. R. Lenders & A. bij de Vaate, 2009. The river Rhine: a global highway for dispersal of aquatic invasive species. Biological Invasions 11: 1989–2008.

    Article  Google Scholar 

  • Lietz, J. E., J. R. Kelly, J. V. Scharold & P. M. Yurista, 2015. Can a rapid underwater video approach enhance the benthic assessment capability of the national coastal condition assessment in the Great Lakes? Environmental Management 55: 1446–1456.

    Article  PubMed  Google Scholar 

  • Lucy, F. E., L. E. Burlakova, A. Y. Karatayev, S. E. Mastitsky & D. T. Zanatta, 2014. Zebra mussel impacts on unionids: A synthesis of trends in North America and Europe. In Nalepa, T. F. & D. W. Schloesser (eds.), Quagga and Zebra Mussels: Biology, Impacts, and Control, 2nd ed. CRC Press, Boca Raton: 623–646.

    Google Scholar 

  • McCabe, D. J., M. A. Beekey, A. Mazloff & J. E. Marsden, 2006. Negative effect of zebra mussels on foraging and habitat use by lake sturgeon (Acipenser fulvescens). Aquatic Conservation: Marine and Freshwater Ecosystems 16: 493–500.

    Article  Google Scholar 

  • Mellina, E. & J. B. Rasmussen, 1994. Patterns in the distribution and abundance of zebra mussel (Dreissena polymorpha) in rivers and lakes in relation to substrate and other physicochemical factors. Canadian Journal of Fisheries and Aquatic Science 51: 1024–1036.

    Article  Google Scholar 

  • Mills, E. L., R. M. Dermott, E. F. Roseman, D. Dustin, E. Mellina, D. B. Corm & A. P. Spidle, 1993. Colonization, ecology, and population structure of the “quagga” mussel (Bivalvia: Dreissenidae) in the lower Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 50: 2305–2314.

    Article  Google Scholar 

  • Molloy, D. P., A. Y. Karatayev, L. E. Burlakova, D. P. Kurandina & F. Laruelle, 1997. Natural enemies of zebra mussels: Predators, parasites, and ecological competitors. Reviews in Fisheries Science 5: 27–97.

    Article  Google Scholar 

  • Murdoch, A. & D. Williams, 1989. Suspended sediments and the distribution of bottom sediment in the Niagara River. Journal of Great Lakes Research 15: 427–436.

    Article  Google Scholar 

  • Ninio, R., S. Delean, K. Osborne & H. Sweatman, 2003. Estimating cover of benthic organisms from underwater video images: variability associated with multiple observers. Marine Ecology Progress Series 265: 107–116.

    Article  Google Scholar 

  • Niagara Board of Control. 2014. One Hundred Twenty Second Semi-Annual Progress Report to the International Joint Commission. Covering the Period September 20, 2013 through March 25, 2014.

  • Niagara Board of Control. 2015. One Hundred Twenty Second Semi-Annual Progress Report to the International Joint Commission. Covering the Period September 25, 2014 through March 5, 2015.

  • NYPA, 2005. New York Power Authority. Surface water quality of the Niagara River and its U.S. tributaries. Niagara Power Project FERC No. 2216.

  • Orlova, M. I., J. R. Muirhead, P. I. Antonov, G Kh Shcherbina, Y. I. Starobogatov, G. I. Biochino, T. W. Therriault & H. J. MacIsaac, 2004. Range expansion of quagga mussels Dreissena rostriformis bugensis in the Volga River and Caspian Sea basin. Aquatic Ecology 38: 561–573.

    Article  Google Scholar 

  • Patterson, M. W. R., J. J. H. Ciborowski & D. R. Barton, 2005. The distribution and abundance of Dreissena species (Dreissenidae) in Lake Erie. Journal of Great Lakes Research 31: 223–237.

    Article  Google Scholar 

  • Quinn, N. P. & J. D. Ackerman, 2014. Effects of near-bed turbulence on the suspension and settlement of freshwater dreissenid mussel larvae. Freshwater Biology 59: 614–629.

    Article  Google Scholar 

  • Ricciardi, A., F. G. Whoriskey & J. B. Rasmussen, 1996. Impact of the (Dreissena) invasion on native unionid bivalves in the upper St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences 53: 1434–1444.

    Article  Google Scholar 

  • Ricciardi, A., F. G. Whoriskey & J. B. Rasmussen, 1997. The role of the zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities on hard substrates. Canadian Journal of Fisheries and Aquatic Sciences 54: 2596–2608.

    Article  Google Scholar 

  • Rodriguez, L. F., 2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biological Invasions 8: 927–939.

    Article  Google Scholar 

  • Sanz-Ronda, F. J., S. Lopez-Saenz, R. San-Martın & A. Palau-Ibars, 2014. Physical habitat of zebra mussel (Dreissena polymorpha) in the lower Ebro River (Northeastern Spain): influence of hydraulic parameters in their distribution. Hydrobiologia 735: 137–147.

    Article  CAS  Google Scholar 

  • Stoeckel, J. A., D. W. Schneider, L. A. Soeken, K. D. Blodgett & R. E. Sparks, 1997. Larval dynamics of a riverine metapopulation: implications for zebra mussel recruitment, dispersal and control in a large-river system. Journal of the North American Benthological Society 16: 586–601.

    Article  Google Scholar 

  • Strayer, D. L. & H. M. Malcom, 2007. Effects of zebra mussels (Dreissena polymorpha) on native bivalves: the beginning of the end or the end of the beginning? Journal of North American Benthological Society 26: 111–122.

    Article  Google Scholar 

  • Strayer, D. L., K. A. Hattala & A. W. Kahnle, 2004. Effects of an invasive bivalve (Dreissena polymorpha) on fish in the Hudson River estuary. Canadian Journal of Fisheries and Aquatic Sciences 61: 924–941.

    Article  Google Scholar 

  • Strayer, D. L., H. M. Malcom, R. E. Bell, S. M. Carbotte & F. O. Nitsche, 2006. Using geophysical information to define benthic habitats in a large river. Freshwater Biology 53: 25–38.

    Article  Google Scholar 

  • Strayer, D. L., N. Cid & H. M. Malcom, 2011. Long-term changes in a population of an invasive bivalve and its effects. Oecologia 165: 1063–1072.

    Article  PubMed  Google Scholar 

  • Thorp, J. H., J. E. Alexander Jr. & G. A. Cobbs, 2002. Coping with warmer, large rivers: a field experiment on potential range expansion of northern quagga mussels (Dreissena bugensis). Freshwater Biology 47: 1779–1790.

    Article  Google Scholar 

  • Van Rein, H. B., C. J. Brown & R. Quinn, 2009. A review of sublittoral monitoring methods in temperate waters: a focus on scale. International Journal of the Society for Underwater Technology 28: 99–113.

    Article  Google Scholar 

  • Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck, J. R. Liebig, I. A. Grigorovich & H. Ojaveer, 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1209–1228.

    Article  Google Scholar 

  • Ward, J. M. & A. Ricciardi, 2007. Impacts of Dreissena invasions on benthic macroinvertebrate communities: a meta-analysis. Diversity and Distribution 13: 155–165.

    Article  Google Scholar 

  • Yeung, C. & R. A. McConnaughey, 2008. Using acoustic backscatter from a sidescan sonar to explain fish and invertebrate distributions: a case study in Bristol Bay, Alaska. ICES Journal of Marine Science 65: 242–254.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Ecological Greenway Fund entitled ‘Investigating Lake Sturgeon habitat use, feeding ecology and benthic resource availability in the lower Niagara River’, (Project 1113459, Award 66141). The authors thank Eric Bruestle, Joshua Fisher, and Mark Clapsadl from the Great Lakes Center at SUNY Buffalo State for their assistance in the field. The authors are grateful to Master student Anthony Cevaer from the Great Lakes Center at SUNY Buffalo State who helped processing sampled in the laboratory. Finally, the authors sincerely thank the anonymous reviewers for their constructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mehler.

Additional information

Guest editors: Manuel P. M. Lopes-Lima, Ronaldo G. Sousa, Lyuba E. Burlakova, Alexander Y. Karatayev & Knut Mehler / Ecology and Conservation of Freshwater Bivalves

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehler, K., Burlakova, L.E., Karatayev, A.Y. et al. Sonar technology and underwater imagery analysis can enhance invasive Dreissena distribution assessment in large rivers. Hydrobiologia 810, 119–131 (2018). https://doi.org/10.1007/s10750-016-3040-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3040-z

Keywords

Navigation