Skip to main content
Log in

Hydroacoustics as a tool for assessing fish biomass and size distribution associated with discrete shallow water estuarine habitats in Louisiana

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We developed a relative index of fish biomass and size distribution in ultra-shallow waters (< 2 m) of Barataria Bay, Louisiana, based on the comparison of horizontal hydroacoustic data with gill net and push trawl catches in an effort to understand the role that habitat plays in both fish biomass and distribution. Exclosure net experiments indicated that the contribution of acoustic backscattering from sources other than fishes were negligible. Split-beam transducer, gill net, and push trawl sampling were conducted concurrently in Barataria Bay to provide information on fish composition and length distributions and for comparisons among gear types. Results suggest that acoustic fish biomass was generally higher in the low salinity stations and lower at the high salinity stations, at least in March 2004. We observed a greater mean length of fishes associated with oyster shell habitats when compared to adjacent sand-mud habitats. This paper demonstrates the utility of hydroacoustics as a tool to quantify relative acoustic fish biomass and size distribution associated with common estuarine habitats in ultra-shallow waters. This study also illustrates the potential of using acoustics for augmenting traditional sampling procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen, Y. C., C. A. Wilson, H. R. Roberts, andJ. Supan. 2005. High resolution mapping and classification of oyster habitats in nearshore Louisiana using sidescan sonar.Estuaries 28:435–446.

    Article  Google Scholar 

  • Boswell, K. M. 2006. Quantifying changes in fish habitat use in coastal waters of Louisiana, USA: A hydroacoustic approach. Ph.D. Dissertation, Louisiana State University, Baton Rouge, Louisiana URL: http://etd.lsu.edu/docs/available/etd-11102006-161848/

    Google Scholar 

  • Boswell, K. M., M. W. Miller, and C. A. Wilson. 2007. A lightweight transducer platform for use in stationary shallow water horizontal-aspect acoustic surveys.Fisheries Research http://dx.doi.org/10.1016/j.fishres.2007.03.003

  • Burwen, D. andS. J. Fleischman. 1998. Evaluation of side-aspect target strength and pulse width as potential hydroacoustic discriminators of fish species in rivers.Canadian Journal of Fisheries and Aquatic Sciences 55:2492–2502.

    Article  Google Scholar 

  • Burwen, D. andS. J. Fleischman. 2003. Mixture models for the species apportionment of hydroacoustic data, with echoenvelope length as the discriminatory variable.ICES Journal of Marine Science 60:592–598.

    Article  Google Scholar 

  • Conner, W. H. and J. W. Day. 1987. Description of the basin, p. 1–7.In W. H. Conner and J. W. Day (eds.), The Ecology of Barataria Basin, Louisiana, U.S. Fish and Wildlife Service Biological Report 85 (7.13). Washington, D.C.

  • Foote, K. G. 1987. Fish target strengths for use in echo-integrator surveys.Journal of the Acoustical Society of America 82:981–987.

    Article  Google Scholar 

  • Foote, K. G., H. P. Knudsen, G. Vestnes, D. N. MacLennan, andE. J. Simmonds. 1987. Calibration of acoustic instruments for fish density estimation: A practical guide ICES Cooperative Research Report No 144. ICES, Copenhagen, Denmark.

    Google Scholar 

  • Frouzova, J., J. Kubecka, H. Balk, andJ. Frouz. 2005. Target strength of some European fish species and its dependence on fish body parameters.Fisheries Research 5:86–96.

    Article  Google Scholar 

  • Gelwick, F. P., S. Akin, D. A. Arrington, andK. O. Winemiller. 2001. Fish assemblage structure in relation to environmental variation in a Texas Gulf coastal wetland.Estuaries 24:285–296.

    Article  Google Scholar 

  • Guillard, J. A. 1998. Daily migration cycles offish populations in a tropical estuary (Sine-Saloum, Senegal) using a horizontaldirected split-beam transducer and multibeam sonar.Fisheries Research 35:23–31.

    Article  Google Scholar 

  • Guillard, J. A., J. J. Albaret, M. Simier, I. Sow, J. Raffray, andL. Tito de Morias. 2004b. Spatio-temporal variability of fish assemblages in the Gambia estuary (West Africa) observed by two vertical hydroacoustic methods: Moored and mobile sampling.Aquatic Living Resources 17:47–55.

    Article  Google Scholar 

  • Guillard, J., A. Lebourges-Dhaussy, andP. Brehmer. 2004a. Simultaneous Svv and TS measurements in young-of-the-year (YOY) freshwater fish using three frequencies.ICES Journal of Marine Science 61:267–273.

    Article  Google Scholar 

  • Hoese, H. D. andR. H. Moore. 1998. Fishes of the Gulf of Mexico, 2nd edition. Texas A&M University Press, College Station, Texas.

    Google Scholar 

  • Hubert, W. A. 1996. Passive capture techniques, p. 157–192.In B. R. Murphy and D. W. Willis (eds.), Fisheries Techniques, 2nd edition. American Fisheries Society, Bethesda, Maryland.

    Google Scholar 

  • Jones, R. F., D. M. Baltz, andR. L. Allen. 2002. Patterns of resource use by fishes and macroinvertebrates in Barataria Bay, Louisiana.Marine Ecology Progress Series 237:271–289.

    Article  Google Scholar 

  • Knudsen, F. R. andH. Sægrov. 2002. Benefits from horizontal beaming during acoustic survey: Application to three Norwegian lakes.Fisheries Research 56:205–211.

    Article  Google Scholar 

  • Krumme, U. 2004. Patterns in tidal migration of fish in a Brazilian mangrove channel as revealed by a split-beam echosounder.Fisheries Research 70:1–15.

    Article  Google Scholar 

  • Krumme, U. andU. Saint-Paul. 2003. Observations of fish migration in a macrotidal mangrove channel in northern Brazil using a 200-kHz split-beam sonar.Aquatic Living Resources 16: 175–184.

    Article  Google Scholar 

  • Kubecka, J. 1996. Use of horizontal dual-beam sonar for fish surveys in shallow waters, p. 165–178.In I. G. Cowx (ed.), Stock Assessment in Inland Fisheries. Fishing News Books, Blackwell, Oxford.

    Google Scholar 

  • Kubecka, J. andM. Wittingerova. 1998. Horizontal beaming as a crucial component of acoustic fish stock assessment in freshwater reservoirs.Fisheries Research 35:99–106.

    Article  Google Scholar 

  • Lilja, J., T. Keskinen, T. J. Marjomaki, P. Valkeajarvi, andJ. Karjalainen. 2003. Upstream migration activity of cyprinids and percids in a channel, monitored by a horizontal split-beam echosounder.Aquatic Living Resources 16:185–190.

    Article  Google Scholar 

  • Lima, I. D. andJ. P. Castello. 1995. Distribution and abundance of south-west Atlantic anchovy spawners (Engraulis anchoita) in relation to oceanographic processes in the southern Brazilian shelf.Fisheries Oceanography 4:1–16.

    Article  Google Scholar 

  • Love, R. H. 1971. Dorsal-aspect target strength of an individual fish.Journal of the Acoustical Society of America 49:816–823.

    Article  Google Scholar 

  • MacLennan, D. N., P. G. Fernandes, andJ. Dalen. 2002. A consistent approach to definitions and symbols in fisheries acoustics.ICES Journal of Marine Science 59:365–369.

    Article  Google Scholar 

  • Moursund, R. A., T. J. Carlson, andR. D. Peters. 2003. A fisheries application of a dual-frequency identification sonar acoustic camera.ICES Journal of Marine Science 60:678–683.

    Article  Google Scholar 

  • Mouse, P. J. andJ. Kemper. 1996. Applications of a hydroacoustic sampling technique in a large wind-exposed shallow lake, p. 179–195.In I. G. Cowx (ed.), Stock Assessment in Inland Fisheries. Fishing News Books, Blackwell, Oxford.

    Google Scholar 

  • Pedersen, B. andM. V. Trevorrow. 1999. Continuous monitoring of fish in a shallow channel using a fixed horizontal sonar.Journal of the Acoustical Society of America 105:3126–3135.

    Article  Google Scholar 

  • Prchalova, M., V. Drastik, J. Kubecka, B. Sricharoendham, F. Schiemer, andJ. Vijverberg. 2003. Acoustic study of fish and invertebrate behavior in a tropical reservoir.Aquatic Living Resources 16:325–331.

    Article  Google Scholar 

  • Rozas, L. P. andT. J. Minello. 1998. Nekton use of salt marsh, seagrass, and nonvegetated habitats in a south Texas (USA) estuary.Bulletin of Marine Science 63:481–501.

    Google Scholar 

  • Rozas, L. P. andD. J. Reed. 1994. Comparing nekton assemblages of subtidal habitats in pipeline canals traversing brackish and saline marshes in coastal Louisiana.Wetlands 14:262–275.

    Article  Google Scholar 

  • Rozas, L. P. andR. J. Zimmerman. 2000. Small-scale patterns of nekton use among marsh and adjacent shallow non-vegetated areas of the Galveston Bay Estuary, Texas (USA).Marine Ecology Progress Series 193:217–239.

    Article  Google Scholar 

  • Rudstam, L. G., S. Hansson, T. Lindem, andD. W. Einhouse. 1999. Comparison of target strength distributions and fish densities obtained with split and single beam echo sounders.Fisheries Research 42:207–214.

    Article  Google Scholar 

  • Simmonds, E. J. andD. N. MacLennan. 2005. Fisheries Acoustics: Theory and Practice, 2nd edition. Blackwell Science, Oxford, U.K.

    Google Scholar 

  • Sokal, R. R. andF. J. Rohlf. 1995. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edition. W. H. Freeman and Co., New York.

    Google Scholar 

  • Stanley, D. R. andC. A. Wilson. 1998. Spatial variation in fish density at three petroleum platforms as measured with dualbeam hydroacoustics.Gulf of Mexico Science 1:73–82.

    Google Scholar 

  • Subrahmanyam, C. B. andC. L. Coultas. 1980. Studies on the animal communities in two north Florida salt marshes. Part III. Seasonal fluctuations of fish and macroinvertebrates.Bulletin of Marine Science 30:790–818.

    Google Scholar 

  • Swartzman, G. andB. Hickey. 2003. Evidence for a regime shift after the 1997–1998 El Niño, based on 1995, 1998, and 2001 acoustic surveys in the Pacific eastern boundary current.Estuaries 26:1032–1043.

    Article  Google Scholar 

  • Thompson, B. A. and W. W. Forman. 1987. Nekton, p. 80–95.In W. H. Conner and J. W. Day (eds.), The Ecology of Barataria Basin, Louisiana, U.S. Fish and Wildlife Service Biological Report 85 (7.13). Washington, D.C.

  • Trevorrow, M. V. 1998. Boundary scattering limitations to fish detection in shallow waters.Fisheries Research 35:127–135.

    Article  Google Scholar 

  • Underwood, A. J. 1981. Techniques of analysis of variance in experimental marine biology and ecology.Oceanography and Marine Biology Annual Review 19:513–605.

    Google Scholar 

  • Yule, D. 2000. Comparison of horizontal acoustic and purse-seine estimates of salmonid densities and sizes in eleven Wyoming waters.North American Journal of Fisheries Management 20:759–775.

    Article  Google Scholar 

  • Zar, J. H. 1996. Biostatistical Analysis, 3rd edition. Prentice Hall, Upper Saddle River, New Jersey.

    Google Scholar 

Source of Unpublished Materials

  • Froese, R. and D. Pauly (eds.). 2006. FishBase. World Wide Web electronic publication. www.fishbase.org, version (05/2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Boswell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boswell, K.M., Wilson, M.P. & Wilson, C.A. Hydroacoustics as a tool for assessing fish biomass and size distribution associated with discrete shallow water estuarine habitats in Louisiana. Estuaries and Coasts: J ERF 30, 607–617 (2007). https://doi.org/10.1007/BF02841958

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02841958

Keywords

Navigation