Skip to main content
Log in

Functional and taxonomic approaches differently highlight local and spatial processes in phytoplankton metacommunities

  • MICROALGAL FUNCTIONAL TRAITS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Despite advances in phytoplankton ecology through functional approaches, little is known about functional traits highlighting metacommunity processes. Our aim was to highlight and compare the influence of spatial and local environmental factors in a phytoplankton metacommunity, in a subtropical shallow lake system, based on taxonomic composition and different functional trait measures. Environmental filtering significantly explained metacommunity variation in most approaches. The spatial signal found could be interpreted as mass effects, given the scale of the present study, and was also a significantly driver of community variability. Among the functional measures, Morphology-Based Functional Groups revealed a stronger influence of the pure environmental component. Although the taxonomic approach helped capture variability in the local environment in a reliable way, it also showed the highest residual variance. Phytoplankton volume significantly captured both local and spatial processes under low residual variance, which may make it a promising functional trait for metacommunity studies. Our findings demonstrated that the drivers of phytoplankton metacommunity may be differently captured by taxonomic and functional measures, so that the approaches can eventually give more or less weight to the environmental and/or spatial signals. We thus recommend the use of taxonomic and functional approaches in metacommunity studies in a complementary way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. De Moraes Gonçalves & G. Sparovek, 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22(6): 711–728.

    Article  ADS  Google Scholar 

  • Association, American Public Health. & – APHA, 2012. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC:

    Google Scholar 

  • Araújo, A. C. & E. M. Bicudo, 2006. Criptógamos do Parque Estadual das Fontes do Ipiranga, São Paulo, SP. Algas, 22: Zygnemaphyceae (gêneros Actinotaenium, Cosmarium e Heimansia). Hoehnea 33(2): 219–237.

    Google Scholar 

  • Azevedo, M. T. P., N. M. C. Nogueira & C. L. Sant’Anna, 1996. Criptógamos do Parque Estadual das Fontes do Ipiranga, São Paulo, SP. Algas, 8: Cyanophyceae. Hoehnea 23(1): 1–38.

    Article  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991. https://doi.org/10.1890/0012-9658(2006)87[2985:TROEAS]2.0.CO;2.

    Article  PubMed  Google Scholar 

  • Bicudo, C. E. M., 2004. Criptógamos do Parque Estadual das Fontes do Ipiranga, São Paulo, SP Algas, 18: Chlorophyceae (Volvocales). Revista Brasileira de Botânica 27(1): 85–102.

    Google Scholar 

  • Bicudo, C. E. M., D. C. Bicudo, C. Ferragut, M. R. M. Lopes & P. R. Pires, 2003. Criptógamos do Parque Estadual das Fontes do Ipiranga, São Paulo, SP. Algas, 17: Chrysophyceae. Hoehnea 30(2): 127–153.

    Google Scholar 

  • Bicudo, C. & M. Menezes, 2017. Gêneros de algas de águas continentais do Brasil (chave para identificação e descrições). São Carlos: RiMa, 3º ed, 554p.

  • Bohnenberger, J. E., F. Schneck, L. O. Crossetti, M. S. Lima & D. Motta-Marques, 2018. Taxonomic and functional nestedness patterns of phytoplankton communities among coastal shallow lakes in southern Brazil. Journal of Plankton Research 40: 555–567. https://doi.org/10.1093/plankt/fby032.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Bortolini, J. C., P. R. L. Silva, G. Baumgartner & N. C. Bueno, 2019. Response to environmental, spatial, and temporal mechanisms of the phytoplankton metacommunity: comparing ecological approaches in subtropical reservoirs. Hydrobiologia 830: 45–61. https://doi.org/10.1007/s10750-018-3849-8.

    Article  Google Scholar 

  • Calvacante, K. P., V. Becker & L. S. Cardoso, 2018. A proxy for estimating the cell volume of Ceratium furcoides (Dinophyceae): basis for monitoring Brazilian reservoirs. Lakes and Reservoirs 23: 168–171. https://doi.org/10.1111/lre.12211.

    Article  CAS  Google Scholar 

  • Cardoso, L. S., D. M. Faria, L. O. Crossetti & D. Da Motta Marques, 2019. Phytoplankton, periphyton, and zooplankton patterns in the pelagic and littoral regions of a large subtropical shallow lake. Hydrobiologia 831: 119–132. https://doi.org/10.1007/s10750-018-3729-2.

    Article  CAS  Google Scholar 

  • Cardoso, L. S. & D. Da Motta-Marques, 2003. Rate of change of the phytoplankton community in Itapeva Lake (North Coast of Rio Grande do Sul, Brazil), based on the wind driven hydrodynamic regime. Hydrobiologia 497: 1–12. https://doi.org/10.1023/A:1025449202083.

    Article  Google Scholar 

  • Castro, A. A. J., C. E. M. Bicudo & D. C. Bicudo, 1991. Criptógamos do Parque Estadual das Fontes do Ipiranga, São Paulo, SP. Algas 2: Cryptophyceae. Hoehnea 18(1): 87–106.

    Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182. https://doi.org/10.1111/j.1461-0248.2005.00820.x.

    Article  PubMed  Google Scholar 

  • Costa, A. P. T., L. O. Crossetti, S. M. Hartz, F. G. Becker, L. U. Hepp, J. E. Bohnenberger, M. S. Lima, T. Guimarães & F. Schneck, 2020. Land cover is the main correlate of phytoplankton beta diversity in subtropical coastal shallow lake. Aquatic Ecology 54: 1015–1028. https://doi.org/10.1007/s10452-020-09790-w.

    Article  Google Scholar 

  • Crossetti, L. O., L. M. Freitas-Teixeira, J. L. Bohnenberger, U. H. Schulz, L. R. Rodrigues & D. Motta-Marques, 2018. Responses of the phytoplankton functional structure to the spatial and temporal heterogeneity in a large subtropical shallow lake. Acta Limnologica Brasiliensia. https://doi.org/10.1590/S2179-975X7217.

    Article  Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747. https://doi.org/10.1111/j.1461-0248.2012.01794.x.

    Article  PubMed  Google Scholar 

  • Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi & H. H. Wagner, 2019. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-7.

  • Dray, S., R. Pélissier, P. Couteron, M. J. Fortin, P. Legendre, P. R. Peres-Neto, E. Bellier, R. Bivand, F. G. Blanchet, M. De Cáceres, A. B. Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse & H. H. Wagner, 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs 82: 257–262. https://doi.org/10.1890/11-1183.1.

    Article  Google Scholar 

  • Fernandes, S. & C. E. M. Bicudo, 2009. Criptógamos do Parque Estadual das Fontes do Ipiranga, São Paulo, SP. Algas, 26: Chlorophyceae (famílias Chlorococcaceae e Coccomyxaceae). Hoehnea 36(1): 173–191.

  • Finlay, B. J., 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063. https://doi.org/10.1126/science.1070710.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Fonseca, B. M., C. Ferragut, A. Tucci, L. O. Crossetti, F. Ferrari, D. C. Bicudo, C. L. Sant’Anna & C. E. M. Bicudo, 2014. Biovolume de cianobactérias e algas de reservatórios tropicais do Brasil com diferentes estados tróficos. Hoehnea 41(1): 9–30. https://doi.org/10.1590/S2236-89062014000100002.

    Article  Google Scholar 

  • Grime, J. P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111(982): 1169–1194.

    Article  Google Scholar 

  • Guimarães, T. F. R., S. M. Hartz & F. G. Becker, 2014. Lake connectivity and fish species richness in southern Brazilian coastal lakes. Hydrobiologia 740: 207–217. https://doi.org/10.1007/s10750-014-1954-x.

    Article  Google Scholar 

  • Guo, K., N. Wu, C. Wang, D. Yang, Y. He, Y. Luo, Y. Chai, M. Duan, X. Huang & T. Riis, 2019. Trait dependent roles of environmental factors, spatial processes and grazing pressure on lake phytoplankton metacommunity. Ecological Indicators 103: 312–320. https://doi.org/10.1016/j.ecolind.2019.04.028.

    Article  ADS  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. L. Valanko & M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60(5): 845–869. https://doi.org/10.1111/fwb.12533.

    Article  Google Scholar 

  • Hentcheke, G. S. & L. C. Torgan, 2010. Desmodesmus and Scenedesmus (Scendesmaceae, Sphaeropleales, Chlorophyceae) in aquatic environments from the Coastal Plain of Rio Grande do Sul. Brazil. Rodriguésia 61(4): 585–601.

    Article  Google Scholar 

  • Hillebrand, H., D. Dürseken, D. Kirschiel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Horner-Devine, M. C., J. M. Silver, M. A. Leibold, B. J. M. Bohannan, R. K. Colwell, J. A. Fuhrman, J. L. Green, C. R. Kuske, J. B. H. Martiny, G. Muyzer, L. Øvreås, A. L. Reysenbach & V. H. Smith, 2007. A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88: 1345–1353. https://doi.org/10.1890/06-0286.

    Article  PubMed  Google Scholar 

  • Huszar, V. L. M., J. C. Nabout, M. Appel, J. B. O. Santos, D. S. Abe & L. H. S. Silva, 2015. Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin. Journal of Plankton Research 37: 1190–1200. https://doi.org/10.1093/plankt/fbv084.

    Article  Google Scholar 

  • Incagnone, G., F. Marrone, R. Barone, L. Robba & L. Naselli-Flores, 2015. How do freshwater organisms cross the “dry ocean”? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750: 103–123. https://doi.org/10.1007/s10750-014-2110-3.

    Article  Google Scholar 

  • Iatskiu, P., V. M. Bovo-Scomparin, B. T. Segovia, L. F. M. Velho, M. J. Lemke & L. C. Rodrigues, 2018. Variability in mean size of phytoplankton in two floodplain lakes of different climatic regions. Hydrobiologia 823: 135–151. https://doi.org/10.1007/s10750-018-3702-0.

    Article  CAS  Google Scholar 

  • Izaguirre, I., J. F. Saad, M. Romina-Schiaffino, A. Vinocur, G. Tell, M. L. Sánchez, L. Allende & R. Sinistro, 2015. Drivers of phytoplankton diversity in patagonian and antarctic lakes across a latitudinal gradient (2150 km): the importance of spatial and environmental factors. Hydrobiologia 764: 157–170. https://doi.org/10.1007/s10750-015-2269-2.

    Article  CAS  Google Scholar 

  • Jenkins, D. G., C. R. Brescacin, C. V. Duxbury, J. A. Elliott, J. A. Evans, K. R. Grablow, M. Hillegass, B. N. Lyon, G. A. Metzger, M. L. Olandese, D. Pepe, G. A. Silvers, H. N. Suresch, T. N. Thompson, C. M. Trexler, G. E. Williams, N. C. Williams & S. E. Williams, 2007. Does size matter for dispersal distance? Global Ecology and Biogeography 16: 415–425. https://doi.org/10.1111/j.1466-8238.2007.00312.x.

    Article  Google Scholar 

  • Komárek, J. & B. Fott, 1983. Das Phytoplankton des Süβwassers (Systematik und Biologie). Sttutgart: E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. obermiller).

  • Kristiansen, J., 1996. Dispersal of freshwater algae – a review. Hydrobiologia 336: 151–157.

    Article  Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627. https://doi.org/10.1111/j.1365-2427.2009.02298.x.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology, 3rd ed. Elsevier, Oxford:

    Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x.

    Article  Google Scholar 

  • Leruste, A., S. Villéger, N. Malet, R. De Wit & B. Bec, 2018. Complementarity of the multidimensional functional and the taxonomic approaches to study phytoplankton communities in three Mediterranean coastal lagoons of different trophic status. Hydrobiologia 815: 207–227. https://doi.org/10.1007/s10750-018-3565-4.

    Article  CAS  Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639. https://doi.org/10.1146/annurev.ecolsys.39.110707.173549.

    Article  Google Scholar 

  • Litchman, E., P. T. Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15–28. https://doi.org/10.1007/s10750-010-0341-5.

    Article  CAS  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The invert microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Øvreås, A. L. Reysenbach, V. H. Smith & J. T. Staley, 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4: 102–112. https://doi.org/10.1038/nrmicro1341.

    Article  CAS  PubMed  Google Scholar 

  • Moresco, G. A., J. C. Bortolini, J. D. Dias, A. Pineda, S. Jati & L. C. Rodrigues, 2017. Drivers of phytoplankton richness and diversity components in Neotropical floodplain lakes, from small to large spatial scales. Hydrobiologia 799(1): 203–215. https://doi.org/10.1007/s10750-017-3214-3.

    Article  Google Scholar 

  • Naselli-Flores, L. & J. Padisák, 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial processes. Hydrobiologia 764(1): 303–313. https://doi.org/10.1007/s10750-015-2519-3.

    Article  Google Scholar 

  • Ng, I. S. Y., C. M. Carr & K. Cottenie, 2009. Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619: 133–143. https://doi.org/10.1007/s10750-008-9605-8.

    Article  Google Scholar 

  • Oksanen, J. F., G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2019. vegan: Community Ecology Package. R Package Version 2.5-6.

  • Padial, A. A., F. Ceschin, S. A. J. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9: 1–8. https://doi.org/10.1371/journal.pone.0111227.

    Article  CAS  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19. https://doi.org/10.1007/s10750-008-9645-0.

    Article  Google Scholar 

  • Padisák, J., G. Vasas & G. Borics, 2016. Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia 764: 3–27. https://doi.org/10.1007/s10750-015-2259-4.

    Article  CAS  Google Scholar 

  • Pančić, M. & T. Kiørboe, 2018. Phytoplankton defence mechanisms: traits and trade-offs. Biological Reviews 93(2): 1269–1303. https://doi.org/10.1111/brv.12395.

    Article  PubMed  Google Scholar 

  • Pedrozo, S. C. & O. Rocha, 2007. Environmental quality evaluation of lakes in the Rio Grande do Sul Coastal Plain. Brazilian Archives of Biology and Technology 50: 673–685. https://doi.org/10.1590/S1516-89132007000400013.

    Article  CAS  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625. https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2.

    Article  PubMed  Google Scholar 

  • R Core Team, 2019. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org.

  • Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed), Growth and reproductive strategies of freshwater phytoplankton Cambridge University Press, Cambridge: 388–433.

    Google Scholar 

  • Reynolds, C. S., 2006. The ecology of phytoplankton, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Reynolds, C. S., J. A. Elliott & M. A. Frassl, 2014. Predictive utility of trait-separated phytoplankton groups: a robust approach to modeling population dynamics. Journal of Great Lakes Research 40: 143–150. https://doi.org/10.1016/j.jglr.2014.02.005.

    Article  Google Scholar 

  • Ribeiro, K. F., L. Duarte & L. O. Crossetti, 2018a. Everything is not everywhere: a tale on the biogeography of cyanobacteria. Hydrobiologia 820: 23–49. https://doi.org/10.1007/s10750-018-3669-x.

    Article  CAS  Google Scholar 

  • Ribeiro, K. F., C. M. da Rocha, D. de Castro, L. R. Rodrigues & L. O. Crossetti, 2018b. Distribution and coexistence patterns of phytoplankton in subtropical shallow lakes and the role of niche-based and spatial processes. Hydrobiologia 814(1): 233–246. https://doi.org/10.1007/s10750-018-3539-6.

    Article  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619. https://doi.org/10.1111/fwb.12520.

    Article  Google Scholar 

  • Schäfer, A., R. Lanzer & L. Scur, 2017. Atlas Socioambiental do Município de Osório. Caxias do Sul, RS: Educs, 237p.

  • Scheffer, M., S. Rinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18. https://doi.org/10.1023/A:1024404804748.

    Article  Google Scholar 

  • Schwarzbold, A. & A. Schäfer, 1984. Gênese e morfologia das lagoas costeiras do Rio Grande do Sul, Brasil. Amazoniana 9: 87–104.

    Google Scholar 

  • Sharma, N. K., A. K. Rai, S. Singh & R. M. Brown Jr., 2007. Airborne algae: their present status and relevance. Journal of Phycology 43: 615–627. https://doi.org/10.1111/j.1529-8817.2007.00373.x.

    Article  Google Scholar 

  • Sieburth, J. M. N., V. Smetacek & J. Lenz, 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography 23: 1256–63.

    Article  ADS  Google Scholar 

  • Silva, A. M., T. A. V. Ludwig, P. I. Tremarin & I. S. Vercellino, 2010. Diatomáceas perifíticas em um sistema eutrófico brasileiro (Reservatório do Iraí, estado do Paraná). Acta Botânica Brasílica 24(4): 997–1016. https://doi.org/10.1590/S0102-33062010000400015.

    Article  Google Scholar 

  • Silva, S. M. A., J. C. Cabreira, J. G. Voos & E. A. Lobo, 2013. Species richness of the genera Trachelomonas and Strombomonas (pigmented Euglenophyceae) in a subtropical urban lake in the Porto Alegre Botanical Garden, RS. Brazil. Acta Botanica Brasilica 27(3): 526–536. https://doi.org/10.1590/S0102-33062013000300010.

    Article  Google Scholar 

  • Soininen, J., A. Jamoneau, J. Rosebery & S. I. Passy, 2016. Global patterns and drivers of species and trait composition in diatoms. Global Ecology and Biogeography 25: 940–950. https://doi.org/10.1111/geb.12452.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 2012. Canoco reference manual and user's guide: software for ordination, version 5.0. Ithaca USA: Microcomputer Power.

  • Utermöhl, H., 1958. Zur Vervolkomnung der quantitative Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vellend, M., D. S. Srivastava, K. M. Anderson, C. D. Brown, J. E. Jankowski, E. J. Kleynhans, N. J. B. Kraft, A. D. Letaw, A. A. M. Macdonald, J. E. Maclean, I. H. Myers-smith, A. R. Norris & X. Xue, 2014. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 0: 1–11. https://doi.org/10.1111/oik.01493.

    Article  Google Scholar 

  • Vilmi, A., S. M. Karjalainen, S. Hellsten & J. Heino, 2016. Bioassessment in a metacommunity context: Are diatom communities structured solely by species sorting?. Ecological Indicators 62: 86–94. https://doi.org/10.1016/j.ecolind.2015.11.043.

    Article  CAS  Google Scholar 

  • Vilmi, A., K. T. Tolonen, S. M. Karjalainen & J. Heino, 2017. Metacommunity structuring in a highly-connected aquatic system: effects of dispersal, abiotic environment and grazing pressure on microalgal guilds. Hydrobiologia 790: 125–140. https://doi.org/10.1007/s10750-016-3024-z.

    Article  Google Scholar 

  • Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, & E. Garnier, 2007. Let the concept of trait be functional!. Oikos 116: 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x.

    Article  ADS  Google Scholar 

  • Weithoff, G. & B. E. Beiner, 2019. Measures and approaches in trait-based phytoplankton community ecology—from freshwater to marine ecosystems. Frontiers in Marine Science. 6: 40. https://doi.org/10.3389/fmars.2019.00040.

    Article  Google Scholar 

  • Wickham, H., W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, K. Woo & H. Yutani, 2019. ggplot2: create elegant data visualisations using the grammar of graphics. R Package Version 3(2): 1.

    Google Scholar 

  • Wojciechowski, J., J. Heino, L. M. Bini & A. A. Padial, 2017. The strength of species sorting of phytoplankton communities is temporally variable in subtropical reservoirs. Hydrobiologia 800(1): 31–43. https://doi.org/10.1007/s10750-017-3245-9.

    Article  Google Scholar 

  • Wu, N., Y. Qu, B. Guse, K. Makarevičiūtė, S. To, T. Riis & N. Fohrer, 2018. Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae. Ecology and Evolution 8: 2947–2961. https://doi.org/10.1002/ece3.3903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xavier, M. B., 1994. Criptógamos do Parque Estadual das Fontes Do Ipiranga, São Paulo, Sp. Algas, 5: Euglenophyceae (Euglenophyceae Pigmentadas). Hoehnea 21(1/2): 47–73.

    Google Scholar 

  • Xiao, L. J., Y. Zhu, Y. Yang, Q. Lin, B. P. Han & J. Padisák, 2018. Species-based classification reveals spatial processes of phytoplankton meta-communities better than functional group approaches: a case study from three freshwater lake regions in China. Hydrobiologia 811: 313–324. https://doi.org/10.1007/s10750-017-3502-y.

    Article  Google Scholar 

  • Zhou, J. & D. Ning, 2017. Stochastic community assembly: does it matter in microbial ecology? Microbiology and Molecular Biology Reviews 81: 1–32. https://doi.org/10.1128/mmbr.00002-17.

    Article  Google Scholar 

  • Zorzal-Almeida, S., J. Soininen, L. M. Bini & D. C. Bicudo, 2017. Local environment and connectivity are the main drivers of diatom species composition and trait variation in a set of tropical reservoirs. Freshwater Biology 62: 1551–1563. https://doi.org/10.1111/fwb.12966.

    Article  Google Scholar 

Download references

Acknowledgements

We thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq for the scholarship granted for the first author.

Author information

Authors and Affiliations

Authors

Contributions

For the development of this research paper, LVC conducted the data sampling and analysis and contributed in the manuscript writing and revising. KFR conducted the data sampling and analysis and manuscript review. LOC conceived and implemented the research, coordinated all laboratory activities, and contributed in the data analysis, manuscript writing, and revising.

Corresponding author

Correspondence to Lucas Vinicius Stela.

Ethics declarations

Conflict of interest

This study was elaborated with a scholarship granted for the first author by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request. The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Viktória B-Béres, Luigi Naselli-Flores, Judit Padisák & Gábor Borics / Trait- Based Approaches in Micro-Algal Ecology

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stela, L.V., Ribeiro, K.F. & Crossetti, L.O. Functional and taxonomic approaches differently highlight local and spatial processes in phytoplankton metacommunities. Hydrobiologia 851, 785–800 (2024). https://doi.org/10.1007/s10750-023-05374-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05374-5

Keywords

Navigation